1,113 research outputs found

    Simplifying intensity-modulated radiotherapy plans with fewer beam angles for the treatment of oropharyngeal carcinoma.

    Get PDF
    The first aim of the present study was to investigate the feasibility of using fewer beam angles to improve delivery efficiency for the treatment of oropharyngeal cancer (OPC) with inverse-planned intensity-modulated radiation therapy (IP-IMRT). A secondary aim was to evaluate whether the simplified IP-IMRT plans could reduce the indirect radiation dose. The treatment plans for 5 consecutive OPC patients previously treated with a forward-planned IMRT (FP-IMRT) technique were selected as benchmarks for this study. The initial treatment goal for these patients was to deliver 70 Gy to > or = 95% of the planning gross tumor volume (PTV-70) and 59.4 Gy to > or = 95% of the planning clinical tumor volume (PTV-59.4) simultaneously. Each case was re-planned using IP-IMRT with multiple beam-angle arrangements, including four complex IP-IMRT plans using 7 or more beam angles, and one simple IMRT plan using 5 beam angles. The complex IP-IMRT plans and simple IP-IMRT plans were compared to each other and to the FPIMRT plans by analyzing the dose coverage of the target volumes, the plan homogeneity, the dose-volume histograms of critical structures, and the treatment delivery parameters including delivery time and the total number of monitor units (MUs). When comparing the plans, we found no significant difference between the complex IP-IMRT, simple IP-IMRT, and FP-IMRT plans for tumor target coverage (PTV-70: p = 0.56; PTV-59.4: p = 0.20). The plan homogeneity, measured by the mean percentage isodose, did not significantly differ between the IP-IMRT and FP-IMRT plans (p = 0.08), although we observed a trend toward greater inhomogeneity of dose in the simple IP-IMRT plans. All IP-IMRT plans either met or exceeded the quality of the FP-IMRT plans in terms of dose to adjacent critical structures, including the parotids, spinal cord, and brainstem. As compared with the complex IP-IMRT plans, the simple IP-IMRT plans significantly reduced the mean treatment time (maximum probability for four pairwise comparisons: p = 0.0003). In conclusion, our study demonstrates that, as compared with complex IP-IMRT, simple IP-IMRT can significantly improve treatment delivery efficiency while maintaining similar target coverage and sparing of critical structures. However, the improved efficiency does not significantly reduce the total number of MUs nor the indirect radiation dose

    Expression of genes for subunits of plant-type RuBisCO from Chromatium and production of the enzymically active molecule in Escherichia coli

    Get PDF
    AbstractA DNA fragment containing genes for both large (A) and small (B) subunits ofribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) from a photosynthetic bacterium Chromatium vinosum was ligated with vectors for expressing unfused proteins and introduced into cells of Escherichia coli. The expressers of RuBisCO were screened on agar plates using the specific antibody raised against the native enzyme from Chromatium. The production of both subunits A and B in the expressers was demonstrated by an immunoblotting experiment. The amount of RuBisCO produced in the E. coli cells was as high as 15% of the total soluble protein after induction with isopropyl-β-D-thiogalactoside. The specific activity of enzyme molecules produced in E. coli was nearly the same as that of the original Chromatium enzyme. On gel filtration high-performance liquid chromatography the two enzymes showed identical elution behavior, strongly indicating their similar quaternary structures

    Coexistence of Ferromagnetism and Superconductivity in Noncentrosymmetric Materials with Cubic Symmetry

    Full text link
    This is a model study for the emergence of superconductivity in ferromagnetically ordered phases of cubic materials whose crystal structure lacks inversion symmetry. A Ginzburg-Landau-type theory is used to find the ferromagnetic state and to determine the coupling of magnetic order to superconductivity. It is found that noncentrosymmetricity evokes a helical magnetic phase. If the wavelength of the magnetic order is long enough, it gives rise to modulations of the order parameter of superconductivity, both in modulus and complex phase. At magnetic domain walls the nucleation of superconductivity is found to be suppressed as compared to the interior of ferromagnetic domains.Comment: 5 pages, 2 figure

    Thermodynamic Studies on Non Centrosymmetric Superconductors by AC Calorimetry under High Pressures

    Full text link
    We investigated the non centrosymmetric superconductors CePt3_3Si and UIr by the ac heat capacity measurement under pressures. We determined the pressure phase diagrams of these compounds. In CePt3_3Si, the N\'{e}el temperature TNT_{\rm N} = 2.2 K decreases with increasing pressure and becomes zero at the critical pressure PAFP_{\rm AF} \simeq 0.6 GPa. On the other hand, the superconducting phase exists in a wider pressure region from ambient pressure to PAFP_{\rm AF} \simeq 1.5 GPa. The phase diagram of CePt3_3Si is very unique and has never been reported before for other heavy fermion superconductors. In UIr, the heat capacity shows an anomaly at the Curie temperature TC1T_{\rm C1} = 46 K at ambient pressure, and the heat capacity anomaly shifts to lower temperatures with increasing pressure. The present pressure dependence of TC1T_{\rm C1} was consistent with the previous studies by the resistivity and magnetization measurements. Previous ac magnetic susceptibility and resistivity measurements suggested the existence of three ferromagnetic phases, FM1-3. CacC_{\rm ac} shows a bending structure at 1.98, 2.21, and 2.40 GPa .The temperatures where these anomalies are observed are close to the phase boundary of the FM3 phase.Comment: This paper was presented at the international workshop ``Novel Pressure-induced Phenomena in Condensed Matter Systems(NP2CMS)" August 26-29 2006, Fukuoka Japa

    Ferromagnetic Quantum Critical Fluctuations and Anomalous Coexistence of Ferromagnetism and Superconductivity in UCoGe Revealed by Co-NMR and NQR Studies

    Full text link
    Co nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies were performed in the recently discovered UCoGe, in which the ferromagnetic and superconducting (SC) transitions were reported to occur at TCurie3T_{\rm Curie} \sim 3 K and TS0.8T_S \sim 0.8 K (N. T. Huy {\it et al.}, Phys. Rev. Lett. {\bf 99} (2007) 067006), in order to investigate the coexistence of ferromagnetism and superconductivity as well as the normal-state and SC properties from a microscopic point of view. From the nuclear spin-lattice relaxation rate 1/T11/T_1 and Knight-shift measurements, we confirmed that ferromagnetic fluctuations which possess a quantum critical character are present above TCurieT_{\rm Curie} and the occurrence of ferromagnetic transition at 2.5 K in our polycrystalline sample. The magnetic fluctuations in the normal state show that UCoGe is an itinerant ferromagnet similar to ZrZn2_2 and YCo2_2. The onset SC transition was identified at TS0.7T_S \sim 0.7 K, below which 1/T11/T_1 of 30 % of the volume fraction starts to decrease due to the opening of the SC gap. This component of 1/T11/T_1, which follows a T3T^3 dependence in the temperature range of 0.30.10.3 - 0.1 K, coexists with the magnetic components of 1/T11/T_1 showing a T\sqrt{T} dependence below TST_S. From the NQR measurements in the SC state, we suggest that the self-induced vortex state is realized in UCoGe.Comment: 5 pages, 7 figures. submitted to J. Phys. Soc. Jpn. To appear in J. Phys. Soc. Jp

    On the origin of interface states at oxide/III-nitride heterojunction interfaces

    Get PDF
    The energy spectrum of interface state density, D-it(E), was determined at oxide/III-N heterojunction interfaces in the entire band gap, using two complementary photo-electric methods: (i) photo-assisted capacitance-voltage technique for the states distributed near the midgap and the conduction band (CB) and (ii) light intensity dependent photo-capacitance method for the states close to the valence band (VB). In addition, the Auger electron spectroscopy profiling was applied for the characterization of chemical composition of the interface region with the emphasis on carbon impurities, which can be responsible for the interface state creation. The studies were performed for the AlGaN/GaN metal-insulator-semiconductor heterostructures (MISH) with Al2O3 and SiO2 dielectric films and AlxGa1-x layers with x varying from 0.15 to 0.4 as well as for an Al2O3/InAlN/GaN MISH structure. For all structures, it was found that: (i) D-it(E) is an U-shaped continuum increasing from the midgap towards the CB and VB edges and (ii) interface states near the VB exhibit donor-like character. Furthermore, D-it(E) for SiO2/AlxGa1-x/GaN structures increased with rising x. It was also revealed that carbon impurities are not present in the oxide/III-N interface region, which indicates that probably the interface states are not related to carbon, as previously reported. Finally, it was proven that the obtained D-it(E) spectrum can be well fitted using a formula predicted by the disorder induced gap state model. This is an indication that the interface states at oxide/III-N interfaces can originate from the structural disorder of the interfacial region. Furthermore, at the oxide/barrier interface we revealed the presence of the positive fixed charge (Q(F)) which is not related to D-it(E) and which almost compensates the negative polarization charge (Q(pol)(-))

    Microscopic Coexistence of Ferromagnetism and Superconductivity in Single-Crystal UCoGe

    Full text link
    Unambiguous evidence for the microscopic coexistence of ferromagnetism and superconductivity in UCoGe (TCurie2.5T_{\rm Curie} \sim 2.5 K and TSCT_{\rm SC} \sim 0.6 K) is reported from 59^{59}Co nuclear quadrupole resonance (NQR). The 59^{59}Co-NQR signal below 1 K indicates ferromagnetism throughout the sample volume, while nuclear spin-lattice relaxation rate 1/T11/T_1 in the ferromagnetic (FM) phase decreases below TSCT_{\rm SC} due to the opening of the superconducting(SC) gap. The SC state was found to be inhomogeneous, suggestive of a self-induced vortex state, potentially realizable in a FM superconductor. In addition, the 59^{59}Co-NQR spectrum around TCurieT_{\rm Curie} show that the FM transition in UCoGe possesses a first-order character, which is consistent with the theoretical prediction that the low-temperature FM transition in itinerant magnets is generically of first-order.Comment: 5 pages, 5 figure
    corecore