13 research outputs found

    Assessment of fracture risk in a cohort of Egyptian female Systemic Lupus erythematosus patients

    No full text
    Aim of the work: To assess the fracture risk in a cohort of Egyptian systemic lupus erythematosus (SLE) females in correlation to some disease variables. Patients and methods: Seventy female SLE patients ≥40 years old were enrolled with detailed history taking, assessment of disease activity and damage index. Measurement of Serum calcium, phosphorus and alkaline phosphatase, bone mineral density (BMD) by dual emission X-ray absorptiometry (DEXA) at lumbar spine (LS) and femoral neck (FN), serum osteocalcin level and World Health Organization (WHO) fracture risk assessment tool (FRAX®). Results: 20% of the patients had LS osteoporosis, 35.7% LS osteopenia, 8.6% FN osteoporosis, and 42.9% FN osteopenia. Ten-year risk of major and hip fractures was high in SLE patients evidenced by FRAX-Major ≥20% in 10% of patients, and FRAX-Hip ≥3% in 27.1% of patients. Serum osteocalcin level was significantly decreased in SLE patients with lower BMD than those with normal BMD, and significantly decreased in patients with osteoporosis than those with osteopenia. A significant negative correlation was found between osteocalcin level and age of patients, disease duration, disease activity and damage index scores, current intravenous pulse and cumulative steroids, immunosuppressants, anticoagulants, but there was a positive correlation with antimalarials and calcium supplements. Conclusion: Ten-year risk of major and hip fractures was high in SLE patients. Increasing age, disease duration, high anti-DNA titres, higher disease activity and damage index were associated with a higher fracture risk. FRAX predicted fractures among SLE patients with normal and low bone mass not just those with frank osteoporosis. Physicians should be alerted to the higher risk of future fractures in SLE patients for periodic monitoring. Keywords: Systemic lupus erythematosus, Bone mineral density, Osteoporosis, Fracture risk, Fracture risk assessment too

    Phenological, Nutritional and Molecular Diversity Assessment among 35 Introduced Lentil (Lens culinaris Medik.) Genotypes Grown in Saudi Arabia

    Get PDF
    Morphological, nutritional and molecular analyses were carried out to assess genetic diversity among 35 introduced lentil genotypes (Lens culinaris Medik.). The genotypes exhibited significant differences for their field parameters and some of them showed noticeable superiority. The nutritional and proximate analysis showed that some genotypes were excellent sources of proteins, essential amino acids, minerals, anti-oxidants, total phenolic contents (TPC) and total flavonoid contents (TFC) and hence, highlights lentil nutritional and medicinal potential. Sequence-related amplified polymorphism (SRAP) and amplified fragments length polymorphism (AFLP) markers were used to estimate the genetic variability at the molecular level. The existence of a considerable amount of genetic diversity among the tested lentil genotypes was also proven at the molecular level. A total of 2894 polymorphic SRAP and 1625 AFLP loci were successfully amplified using six SRAP and four AFLP primer pair combinations. Polymorphism information content (PIC) values for SRAP and AFLP markers were higher than 0.8, indicating the power and higher resolution of those marker systems in detecting molecular diversity. UPGMA (unweighted pair group method with arithmetic average) cluster analysis based on molecular data revealed large number of sub clusters among genotypes, indicating high diversity levels. The data presented here showed that FLIP2009-64L and FLIP2009-69L could be used as a significant source of yield, total protein, essential amino acids, and antioxidant properties. The results suggest potential lentil cultivation in the central region of Saudi Arabia for its nutritional and medicinal properties, as well as sustainable soil fertility crop

    Preparation and Characterization of Nanostructured Inorganic Copper Zinc Tin Sulfide-Delafossite Nano/Micro Composite as a Novel Photodetector with High Efficiency

    No full text
    A novel photodetector, based on Cu2ZnSnS4, CZTS, is deposited on Cu/CuFeO2 for wavelength and light power intensity detection. The preparation of CuFeO2 is carried out by the direct combustion of Cu foil wetted with Fe(NO3)2 solution. The preparation of CZTS is carried out using the hydrothermal method, then it is dropped on CuFeO2 using the drop casting method at 70 °C. Various analyses are used to look at the chemical, morphological, and optical aspects of the Cu/CuFeO2/CZTS, such as UV–vis, SEM, TEM, selected-area electron diffraction, and XRD, in which all characteristic peaks are confirmed for the prepared materials. The Cu/CuFeO2/CZTS thin film’s SEM image has a homogeneous morphology, with particles that are around 350 nm in size, demonstrating a significant improvement in morphology over Cu/CuFeO2/CZTS thin film. The TEM analysis verified the nanostructured morphology of Cu/CuFeO2/CZTS. From XRD analysis of Cu/CuFeO2/CZTS, the high intensity of the generated peaks indexed to hexagonal (2H) CuFeO2 and kesterite CZTS crystal structures revealed a compact highly crystal material. From optical analysis, CZTS, Cu/CuFeO2, and Cu/CuFeO2/CZTS thin films recoded band gaps of 1.49, 1.75, and 1.23 eV, respectively. According to the band gap measurements, the optical absorption of the Cu/CuFeO2/CZTS photodetector has clearly increased. The Cu/CuFeO2/CZTS as photodetector has a detectivity (D) and responsivity (R) of 1.7 × 1010 Jones and 127 mAW−1, respectively. Moreover, the external quantum efficiency (EQE) is 41.5% at 25 mW·cm−2 and 390 nm. Hence, the prepared Cu/CuFeO2/CZTS photodetector has a very high photoelectrical response, making it very promising as a broadband photodetector

    Preparation and Characterization of Nanostructured Inorganic Copper Zinc Tin Sulfide-Delafossite Nano/Micro Composite as a Novel Photodetector with High Efficiency

    No full text
    A novel photodetector, based on Cu2ZnSnS4, CZTS, is deposited on Cu/CuFeO2 for wavelength and light power intensity detection. The preparation of CuFeO2 is carried out by the direct combustion of Cu foil wetted with Fe(NO3)2 solution. The preparation of CZTS is carried out using the hydrothermal method, then it is dropped on CuFeO2 using the drop casting method at 70 °C. Various analyses are used to look at the chemical, morphological, and optical aspects of the Cu/CuFeO2/CZTS, such as UV–vis, SEM, TEM, selected-area electron diffraction, and XRD, in which all characteristic peaks are confirmed for the prepared materials. The Cu/CuFeO2/CZTS thin film’s SEM image has a homogeneous morphology, with particles that are around 350 nm in size, demonstrating a significant improvement in morphology over Cu/CuFeO2/CZTS thin film. The TEM analysis verified the nanostructured morphology of Cu/CuFeO2/CZTS. From XRD analysis of Cu/CuFeO2/CZTS, the high intensity of the generated peaks indexed to hexagonal (2H) CuFeO2 and kesterite CZTS crystal structures revealed a compact highly crystal material. From optical analysis, CZTS, Cu/CuFeO2, and Cu/CuFeO2/CZTS thin films recoded band gaps of 1.49, 1.75, and 1.23 eV, respectively. According to the band gap measurements, the optical absorption of the Cu/CuFeO2/CZTS photodetector has clearly increased. The Cu/CuFeO2/CZTS as photodetector has a detectivity (D) and responsivity (R) of 1.7 × 1010 Jones and 127 mAW−1, respectively. Moreover, the external quantum efficiency (EQE) is 41.5% at 25 mW·cm−2 and 390 nm. Hence, the prepared Cu/CuFeO2/CZTS photodetector has a very high photoelectrical response, making it very promising as a broadband photodetector

    Novel insights into the synergistic effects of selenium nanoparticles and metformin treatment of letrozole - induced polycystic ovarian syndrome: targeting PI3K/Akt signalling pathway, redox status and mitochondrial dysfunction in ovarian tissue

    No full text
    ABSTRACTPurpose Polycystic ovary syndrome (PCOS) has a series of reproductive and metabolic consequences. Although the link between PCOS, IR, and obesity, their impact on the pathogenesis of PCOS has yet to be determined. Dysfunction of PI3K/AKT pathway has been reported as the main cause of IR in PCOS. This study purposed to explore the effects of selenium nanoparticles (SeNPs) alone and combined with metformin (MET) in a PCOS-IR rat model.Methods After 3 weeks of treatment with SeNPs and/or MET, biochemical analysis of glycemic & lipid profiles, and serum reproductive hormones was performed. Inflammatory, oxidative stress, and mitochondrial dysfunction markers were determined colormetrically. The expression of PI3K and Akt genes were evaluated by Real-time PCR. Histopathological examination and Immunohistochemical analysis of Ki-67 expression were performed.Results The results showed that treatment with SeNPs and/or MET significantly attenuated insulin sensitivity, lipid profile, sex hormones levels, inflammatory, oxidative stress and mitochondrial functions markers. Additionally, PI3K and Akt genes expression were significantly upregulated with improved ovarian histopathological changes.Conclusion Combined SeNPs and MET therapy could be potential therapeutic agent for PCOS-IR model via modulation of the PI3K/Akt pathway, enhancing anti-inflammatory and anti-oxidant properties and altered mitochondrial functions.HighlightsThe strong relationship between obesity, insulin resistance, and polycystic ovarian syndrome.Disturbance of the PI3K/Akt signaling pathway is involved in the progression of polycystic ovary syndrome-insulin resistance (PCOS-IR).In PCOS-IR rats, combined SeNPs and metformin therapy considerably alleviated IR by acting on the PI3K/Akt signaling pathway.The combination of SeNPs and metformin clearly repaired ovarian polycystic pathogenesis and improved hormonal imbalance in PCOS-IR rats
    corecore