5,917 research outputs found

    Bound States of the q-Deformed AdS5 x S5 Superstring S-matrix

    Full text link
    The investigation of the q deformation of the S-matrix for excitations on the string world sheet in AdS5 x S5 is continued. We argue that due to the lack of Lorentz invariance the situation is more subtle than in a relativistic theory in that the nature of bound states depends on their momentum. At low enough momentum |p|<E the bound states transform in the anti-symmetric representation of the super-algebra symmetry and become the solitons of the Pohlmeyer reduced theory in the relativistic limit. At a critical momentum |p|=E they become marginally unstable, and at higher momenta the stable bound states are in the symmetric representation and become the familiar magnons in the string limit as q->1. This subtlety fixes a problem involving the consistency of crossing symmetry with the relativistic limit found in earlier work. With mirror kinematics, obtained after a double Wick rotation, the bound state structure is simpler and there are no marginally unstable bound states.Comment: 25 page

    The Bethe Ansatz for AdS5 x S5 Bound States

    Full text link
    We reformulate the nested coordinate Bethe ansatz in terms of coproducts of Yangian symmetry generators. This allows us to derive the nested Bethe equations for the bound state string S-matrices. We find that they coincide with the Bethe equations obtained from a fusion procedure. The bound state number dependence in the Bethe equations appears through the parameters x^{\pm} and the dressing phase only.Comment: typos correcte

    The Bound State S-Matrix for AdS5 x S5 Superstring

    Get PDF
    We determine the S-matrix that describes scattering of arbitrary bound states in the light-cone string theory in AdS5 x S5. The corresponding construction relies on the Yangian symmetry and the superspace formalism for the bound state representations. The basic analytic structure supporting the S-matrix entries turns out to be the hypergeometric function 4F3. We show that for particular bound state numbers it reproduces all the scattering matrices previously obtained in the literature. Our findings should be relevant for the TBA and Luescher approaches to the finite-size spectral problem. They also shed some light on the construction of the universal R-matrix for the centrally-extended psu(2|2) superalgebra.Comment: 37 pages, 2 figures, v2: typos correcte

    Risk factors for ischemic stroke and transient ischemic attack in patients under age 50

    Get PDF
    To analyze risk factors for ischemic stroke and transient ischemic attack (TIA) in young adults under the age of 50. To make recommendations for additional research and practical consequences. From 97 patients with ischemic stroke or TIA under the age of 50, classical cardiovascular risk factors, coagulation disorders, history of migraine, use of oral contraceptives, cardiac abnormalities on ECG and echocardiography, and the results of duplex ultrasound were retrospectively analyzed. Literature was reviewed and compared to the results. 56.4% of the patients had hypertension, 12.1% increased total cholesterol, 20% hypertriglyceridemia, 31.5% an increased LDL-level, 32.6% a decreased HDL-level and 7.2% a disturbed glucose tolerance. Thrombophilia investigation was abnormal in 21 patients and auto-immune serology was abnormal in 15 patients. Ten of these patients were already known with a systemic disease associated with an increased risk for ischemic stroke (i.e. systemic lupus erythematosus). The ECG was abnormal in 16.7% of the cases, the echocardiography in 12.1% and duplex ultrasound of the carotid arteries was in 31.8% of the cases abnormal. Conventional cardiovascular risk factors are not only important in patients over the age of 50 with ischemic stroke or TIA, but also in this younger population under the age of 50. Thrombophilia investigation and/ or autoimmune serology should be restricted to patients without conventional cardiovascular risk factors and a history or other clinical symptoms associated with hypercoagulability and/ or autoimmune diseases

    Asymptotic Bethe equations for open boundaries in planar AdS/CFT

    Get PDF
    We solve, by means of a nested coordinate Bethe ansatz, the open-boundaries scattering theory describing the excitations of a free open string propagating in AdS5×S5AdS_5\times S^5, carrying large angular momentum J=J56J=J_{56}, and ending on a maximal giant graviton whose angular momentum is in the same plane. We thus obtain the all-loop Bethe equations describing the spectrum, for JJ finite but large, of the energies of such strings, or equivalently, on the gauge side of the AdS/CFT correspondence, the anomalous dimensions of certain operators built using the epsilon tensor of SU(N). We also give the Bethe equations for strings ending on a probe D7-brane, corresponding to meson-like operators in an N=2\mathcal N=2 gauge theory with fundamental matter.Comment: 30 pages. v2: minor changes and discussion section added, J.Phys.A version

    Secret Symmetries in AdS/CFT

    Get PDF
    We discuss special quantum group (secret) symmetries of the integrable system associated to the AdS/CFT correspondence. These symmetries have by now been observed in a variety of forms, including the spectral problem, the boundary scattering problem, n-point amplitudes, the pure-spinor formulation and quantum affine deformations.Comment: 20 pages, pdfLaTeX; Submitted to the Proceedings of the Nordita program `Exact Results in Gauge-String Dualities'; Based on the talk presented by A.T., Nordita, 15 February 201

    Theory of Current-Driven Domain Wall Motion: A Poorman's Approach

    Full text link
    A self-contained theory of the domain wall dynamics in ferromagnets under finite electric current is presented. The current is shown to have two effects; one is momentum transfer, which is proportional to the charge current and wall resistivity (\rhow), and the other is spin transfer, proportional to spin current. For thick walls, as in metallic wires, the latter dominates and the threshold current for wall motion is determined by the hard-axis magnetic anisotropy, except for the case of very strong pinning. For thin walls, as in nanocontacts and magnetic semiconductors, the momentum-transfer effect dominates, and the threshold current is proportional to \Vz/\rhow, \Vz being the pinning potential

    Field-induced domain wall propagation velocity in magnetic nanowires

    Full text link
    A thory of field-induced domain wall (DW) propagation is developed. The theory not only explains why a DW in a defect-free nanowire must propagate at a finite velocity, but also provides a proper definition of DW propagation velocity. This definition, valid for an arbitrary DW structure, allows one to compute the instantaneous DW velocity in a meaningful way even when the DW is not moving as a rigid body. A new velocity-field formula beyond the Walker breakdown field, which is in excellent agreement with both experiments and numerical simulations, is derived
    corecore