15,083 research outputs found

    Exact String Solutions in Nontrivial Backgrounds

    Full text link
    We show how the classical string dynamics in DD-dimensional gravity background can be reduced to the dynamics of a massless particle constrained on a certain surface whenever there exists at least one Killing vector for the background metric. We obtain a number of sufficient conditions, which ensure the existence of exact solutions to the equations of motion and constraints. These results are extended to include the Kalb-Ramond background. The D1D1-brane dynamics is also analyzed and exact solutions are found. Finally, we illustrate our considerations with several examples in different dimensions. All this also applies to the tensionless strings.Comment: 22 pages, LaTeX, no figures; V2:Comments and references added; V3:Discussion on the properties of the obtained solutions extended, a reference and acknowledgment added; V4:The references renumbered, to appear in Phys Rev.

    Semi-Classical Quantization of Circular Strings in De Sitter and Anti De Sitter Spacetimes

    Get PDF
    We compute the {\it exact} equation of state of circular strings in the (2+1) dimensional de Sitter (dS) and anti de Sitter (AdS) spacetimes, and analyze its properties for the different (oscillating, contracting and expanding) strings. The string equation of state has the perfect fluid form P=(γ1)E,P=(\gamma-1)E, with the pressure and energy expressed closely and completely in terms of elliptic functions, the instantaneous coefficient γ\gamma depending on the elliptic modulus. We semi-classically quantize the oscillating circular strings. The string mass is m=C/(πHα),  Cm=\sqrt{C}/(\pi H\alpha'),\;C being the Casimir operator, C=LμνLμν,C=-L_{\mu\nu}L^{\mu\nu}, of the O(3,1)O(3,1)-dS [O(2,2)O(2,2)-AdS] group, and HH is the Hubble constant. We find \alpha'm^2_{\mbox{dS}}\approx 5.9n,\;(n\in N_0), and a {\it finite} number of states N_{\mbox{dS}}\approx 0.17/(H^2\alpha') in de Sitter spacetime; m^2_{\mbox{AdS}}\approx 4H^2n^2 (large nN0n\in N_0) and N_{\mbox{AdS}}=\infty in anti de Sitter spacetime. The level spacing grows with nn in AdS spacetime, while is approximately constant (although larger than in Minkowski spacetime) in dS spacetime. The massive states in dS spacetime decay through tunnel effect and the semi-classical decay probability is computed. The semi-classical quantization of {\it exact} (circular) strings and the canonical quantization of generic string perturbations around the string center of mass strongly agree.Comment: Latex, 26 pages + 2 tables and 5 figures that can be obtained from the authors on request. DEMIRM-Obs de Paris-9404

    Derivation of the physical parameters of the jet in S5 0836+710 from stability analysis

    Full text link
    A number of extragalactic jets show periodic structures at different scales that can be associated with growing instabilities. The wavelengths of the developing instability modes and their ratios depend on the flow parameters, so the study of those structures can shed light on jet physics at the scales involved. In this work, we use the fits to the jet ridgeline obtained from different observations of S5 B0836++710 and apply stability analysis of relativistic, sheared flows to derive an estimate of the physical parameters of the jet. Based on the assumption that the observed structures are generated by growing Kelvin-Helmholtz (KH) instability modes, we have run numerical calculations of stability of a relativistic, sheared jet over a range of different jet parameters. We have spanned several orders of magnitude in jet-to-ambient medium density ratio, and jet internal energy, and checked different values of the Lorentz factor and shear layer width. This represents an independent method to obtain estimates of the physical parameters of a jet. By comparing the fastest growing wavelengths of each relevant mode given by the calculations with the observed wavelengths reported in the literature, we have derived independent estimates of the jet Lorentz factor, specific internal energy, jet-to-ambient medium density ratio and Mach number. We obtain a jet Lorentz factor γ12\gamma \simeq 12, specific internal energy of ε102c2\varepsilon \simeq 10^{-2}\,c^2, jet-to-ambient medium density ratio of η103\eta\approx 10^{-3}, and an internal (classical) jet Mach number of Mj12M_\mathrm{j}\approx 12. We also find that the wavelength ratios are better recovered by a transversal structure with a width of 10%\simeq 10\,\% of the jet radius. This method represents a powerful tool to derive the jet parameters in all jets showing helical patterns with different wavelengths.Comment: Accepted for publication in A&A, 15 pages, 12 figure

    Mass Spectrum of Strings in Anti de Sitter Spacetime

    Get PDF
    We perform string quantization in anti de Sitter (AdS) spacetime. The string motion is stable, oscillatory in time with real frequencies ωn=n2+m2α2H2\omega_n= \sqrt{n^2+m^2\alpha'^2H^2} and the string size and energy are bounded. The string fluctuations around the center of mass are well behaved. We find the mass formula which is also well behaved in all regimes. There is an {\it infinite} number of states with arbitrarily high mass in AdS (in de Sitter (dS) there is a {\it finite} number of states only). The critical dimension at which the graviton appears is D=25,D=25, as in de Sitter space. A cosmological constant Λ0\Lambda\neq 0 (whatever its sign) introduces a {\it fine structure} effect (splitting of levels) in the mass spectrum at all states beyond the graviton. The high mass spectrum changes drastically with respect to flat Minkowski spacetime. For ΛΛN2,\Lambda\sim \mid\Lambda\mid N^2, {\it independent} of α,\alpha', and the level spacing {\it grows} with the eigenvalue of the number operator, N.N. The density of states ρ(m)\rho(m) grows like \mbox{Exp}[(m/\sqrt{\mid\Lambda\mid}\;)^{1/2}] (instead of \rho(m)\sim\mbox{Exp}[m\sqrt{\alpha'}] as in Minkowski space), thus {\it discarding} the existence of a critical string temperature. For the sake of completeness, we also study the quantum strings in the black string background, where strings behave, in many respects, as in the ordinary black hole backgrounds. The mass spectrum is equal to the mass spectrum in flat Minkowski space.Comment: 31 pages, Latex, DEMIRM-Paris-9404

    Strings in Cosmological and Black Hole Backgrounds: Ring Solutions

    Full text link
    The string equations of motion and constraints are solved for a ring shaped Ansatz in cosmological and black hole spacetimes. In FRW universes with arbitrary power behavior [R(X^0) = a\;|X^0|^{\a}\, ], the asymptotic form of the solution is found for both X00X^0 \to 0 and X0X^0 \to \infty and we plot the numerical solution for all times. Right after the big bang (X0=0X^0 = 0), the string energy decreasess as R(X0)1 R(X^0)^{-1} and the string size grows as R(X0) R(X^0) for 01 0 1 . Very soon [ X01 X^0 \sim 1 ] , the ring reaches its oscillatory regime with frequency equal to the winding and constant size and energy. This picture holds for all values of \a including string vacua (for which, asymptotically, \a = 1). In addition, an exact non-oscillatory ring solution is found. For black hole spacetimes (Schwarzschild, Reissner-Nordstr\oo m and stringy), we solve for ring strings moving towards the center. Depending on their initial conditions (essentially the oscillation phase), they are are absorbed or not by Schwarzschild black holes. The phenomenon of particle transmutation is explicitly observed (for rings not swallowed by the hole). An effective horizon is noticed for the rings. Exact and explicit ring solutions inside the horizon(s) are found. They may be interpreted as strings propagating between the different universes described by the full black hole manifold.Comment: Paris preprint PAR-LPTHE-93/43. Uses phyzzx. Includes figures. Text and figures compressed using uufile

    Fuzzy Inference System for VOLT/VAR control in distribution substations in isolated power systems

    Full text link
    This paper presents a fuzzy inference system for voltage/reactive power control in distribution substations. The purpose is go forward to automation distribution and its implementation in isolated power systems where control capabilities are limited and it is common using the same applications as in continental power systems. This means that lot of functionalities do not apply and computational burden generates high response times. A fuzzy controller, with logic guidelines embedded based upon heuristic rules resulting from operators at dispatch control center past experience, has been designed. Working as an on-line tool, it has been tested under real conditions and it has managed the operation during a whole day in a distribution substation. Within the limits of control capabilities of the system, the controller maintained successfully an acceptable voltage profile, power factor values over 0,98 and it has ostensibly improved the performance given by an optimal power flow based automation system

    A method for solve integrable A2A_2 spin chains combining different representations

    Get PDF
    A non homogeneous spin chain in the representations {3} \{3 \} and {3} \{3^*\} of A2A_2 is analyzed. We find that the naive nested Bethe ansatz is not applicable to this case. A method inspired in the nested Bethe ansatz, that can be applied to more general cases, is developed for that chain. The solution for the eigenvalues of the trace of the monodromy matrix is given as two coupled Bethe equations different from that for a homogeneous chain. A conjecture about the form of the solutions for more general chains is presented. PACS: 75.10.Jm, 05.50+q 02.20 SvComment: PlainTeX, harvmac, 13 pages, 3 figures, to appear in Phys. Rev.

    Strings Propagating in the 2+1 Dimensional Black Hole Anti de Sitter Spacetime

    Full text link
    We study the string propagation in the 2+1 black hole anti de Sitter background (2+1 BH-ADS). We find the first and second order fluctuations around the string center of mass and obtain the expression for the string mass. The string motion is stable, all fluctuations oscillate with real frequencies and are bounded, even at r=0.r=0. We compare with the string motion in the ordinary black hole anti de Sitter spacetime, and in the black string background, where string instabilities develop and the fluctuations blow up at r=0.r=0. We find the exact general solution for the circular string motion in all these backgrounds, it is given closely and completely in terms of elliptic functions. For the non-rotating black hole backgrounds the circular strings have a maximal bounded size rm,r_m, they contract and collapse into r=0.r=0. No indefinitely growing strings, neither multi-string solutions are present in these backgrounds. In rotating spacetimes, both the 2+1 BH-ADS and the ordinary Kerr-ADS, the presence of angular momentum prevents the string from collapsing into r=0.r=0. The circular string motion is also completely solved in the black hole de Sitter spacetime and in the black string background (dual of the 2+1 BH-ADS spacetime), in which expanding unbounded strings and multi-string solutions appear.Comment: Latex, 54 pages + 2 tables and 4 figures (not included). PARIS-DEMIRM 94/01

    String dynamics in cosmological and black hole backgrounds: The null string expansion

    Get PDF
    We study the classical dynamics of a bosonic string in the DD--dimensional flat Friedmann--Robertson--Walker and Schwarzschild backgrounds. We make a perturbative development in the string coordinates around a {\it null} string configuration; the background geometry is taken into account exactly. In the cosmological case we uncouple and solve the first order fluctuations; the string time evolution with the conformal gauge world-sheet τ\tau--coordinate is given by X0(σ,τ)=q(σ)τ11+2β+c2B0(σ,τ)+X^0(\sigma, \tau)=q(\sigma)\tau^{1\over1+2\beta}+c^2B^0(\sigma, \tau)+\cdots, B0(σ,τ)=kbk(σ)τkB^0(\sigma,\tau)=\sum_k b_k(\sigma)\tau^k where bk(σ)b_k(\sigma) are given by Eqs.\ (3.15), and β\beta is the exponent of the conformal factor in the Friedmann--Robertson--Walker metric, i.e. RηβR\sim\eta^\beta. The string proper size, at first order in the fluctuations, grows like the conformal factor R(η)R(\eta) and the string energy--momentum tensor corresponds to that of a null fluid. For a string in the black hole background, we study the planar case, but keep the dimensionality of the spacetime DD generic. In the null string expansion, the radial, azimuthal, and time coordinates (r,ϕ,t)(r,\phi,t) are r=nAn1(σ)(τ)2n/(D+1) ,r=\sum_n A^1_{n}(\sigma)(-\tau)^{2n/(D+1)}~, ϕ=nAn3(σ)(τ)(D5+2n)/(D+1) ,\phi=\sum_n A^3_{n}(\sigma)(-\tau)^{(D-5+2n)/(D+1)}~, and t=nAn0(σ)(τ)1+2n(D3)/(D+1) .t=\sum_n A^0_{n} (\sigma)(-\tau)^{1+2n(D-3)/(D+1)}~. The first terms of the series represent a {\it generic} approach to the Schwarzschild singularity at r=0r=0. First and higher order string perturbations contribute with higher powers of τ\tau. The integrated string energy-momentum tensor corresponds to that of a null fluid in D1D-1 dimensions. As the string approaches the r=0r=0 singularity its proper size grows indefinitely like (τ)(D3)/(D+1)\sim(-\tau)^{-(D-3)/(D+1)}. We end the paper giving three particular exact string solutions inside the black hole.Comment: 17 pages, REVTEX, no figure
    corecore