34 research outputs found

    Three-Loop Calculation of the Anyonic Full Cluster Expansion

    Full text link
    We calculate the perturbative correction to every cluster coefficient of a gas of anyons through second order in the anyon coupling constant, as described by Chern-Simons field theory.Comment: 10 pages, PlainTex with macro 'manumac', include

    Parity Violation in Aharonov-Bohm Systems: The Spontaneous Hall Effect

    Full text link
    We show how macroscopic manifestations of PP (and TT) symmetry breaking can arise in a simple system subject to Aharonov-Bohm interactions. Specifically, we study the conductivity of a gas of charged particles moving through a dilute array of flux tubes. The interaction of the electrons with the flux tubes is taken to be of a purely Aharonov-Bohm type. We find that the system exhibits a non-zero transverse conductivity, i.e., a spontaneous Hall effect. This is in contrast with the fact that the cross sections for both scattering and bremsstrahlung (soft photon emission) of a single electron from a flux tube are invariant under reflections. We argue that the asymmetry in the conductivity coefficients arises from many-body effects. On the other hand, the transverse conductivity has the same dependence on universal constants that appears in the Quantum Hall Effect, a result that we relate to the validity of the Mean Field approximation.Comment: 12 pages (4 figures available upon request), RevTex, EHU-FT-93/1

    On the Entropy and the Density Matrix of Cosmological Perturbations

    Get PDF
    We look at the transition to the semiclassical behaviour and the decoherence process for the inhomogeneous perturbations in the inflationary universe. Two different decoherence mechanisms appear: one dynamical, accompanied with a negligible, if at all, entropy gain, and the other, effectively irreversible dephasing, due to a rapid variation in time of the off-diagonal density matrix elements in the post-inflationary epoch. We thus settle the discrepancies in the entropy content of perturbations evaluated by different authors.Comment: LaTeX2e with the epsf packag

    Matter-induced vertices for photon splitting in a weakly magnetized plasma

    Get PDF
    We evaluate the three-photon vertex functions at order BB and B2B^{2} in a weak constant magnetic field at finite temperature and density with on shell external lines. Their application to the study of the photon splitting process leads to consider high energy photons whose dispersion relations are not changed significantly by the plasma effects. The absorption coefficient is computed and compared with the perturbative vacuum result. For the values of temperature and density of some astrophysical objects with a weak magnetic field, the matter effects are negligible.Comment: 14 pages, 1 figure. Accepted for publication in PR

    Damping rate of plasmons and photons in a degenerate nonrelativistic plasma

    Full text link
    A calculation is presented of the plasmon and photon damping rates in a dense nonrelativistic plasma at zero temperature, following the resummation program of Braaten-Pisarski. At small soft momentum kk, the damping is dominated by 3→23 \to 2 scattering processes corresponding to double longitudinal Landau damping. The dampings are proportional to (α/vF)3/2k2/m(\alpha/v_{F})^{3/2} k^2/m, where vFv_{F} is the Fermi velocity.Comment: 9 pages, 2 figure

    The speed of cool soft pions

    Get PDF
    The speed of cool pions in the chiral limit is analytically computed at low temperature within the imaginary time formalism to two loop order. This evaluation shows a logarithmic dependence in the temperature where the scale within the logarithm is very large compared to the pion decay constant.Comment: 10 pages, 2 figures.A few typos corrected,some comments added.Version to be published in Phys. Rev.

    Color conductivity and ladder summation in hot QCD

    Get PDF
    The color conductivity is computed at leading logarithmic order using a Kubo formula. We show how to sum an infinite series of planar ladder diagrams, assuming some approximations based on the dominance of soft scattering processes between hard particles in the plasma. The result agrees with the one obtained previously from a kinetical approach.Comment: 15 pages, 4 figures. Explanations enlarged, two figures and some refs added, typos corrected. Final version to be published in Phys.Rev.
    corecore