46,942 research outputs found

    Preliminary Results on the Empirical Applicability of the Tsallis Distribution in Elastic Hadron Scattering

    Full text link
    We show that the proton-proton elastic differential cross section data at dip position and beyond can be quite well described by a parametrization based on the Tsallis distribution, with only five free fit parameters. Extrapolation of the results obtained at 7 TeV to large momentum transfer, suggests that hadrons may not behave as a black-disk at the asymptotic energy region.Comment: 3 pages, 1 figure, version matching proceedings style, XII Hadron Physics, 2012, AIP Proc. Con

    Poisson Geometry in Constrained Systems

    Full text link
    Constrained Hamiltonian systems fall into the realm of presymplectic geometry. We show, however, that also Poisson geometry is of use in this context. For the case that the constraints form a closed algebra, there are two natural Poisson manifolds associated to the system, forming a symplectic dual pair with respect to the original, unconstrained phase space. We provide sufficient conditions so that the reduced phase space of the constrained system may be identified with a symplectic leaf in one of those. In the second class case the original constrained system may be reformulated equivalently as an abelian first class system in an extended phase space by these methods. Inspired by the relation of the Dirac bracket of a general second class constrained system to the original unconstrained phase space, we address the question of whether a regular Poisson manifold permits a leafwise symplectic embedding into a symplectic manifold. Necessary and sufficient for this is the vanishing of the characteristic form-class of the Poisson tensor, a certain element of the third relative cohomology.Comment: 41 pages, more detailed abstract in paper; v2: minor corrections and an additional referenc

    Pulsation Period Changes as a Tool to Identify Pre-Zero Age Horizontal Branch Stars

    Full text link
    One of the most dramatic events in the life of a low-mass star is the He flash, which takes place at the tip of the red giant branch (RGB) and is followed by a series of secondary flashes before the star settles into the zero-age horizontal branch (ZAHB). Yet, no stars have been positively identified in this key evolutionary phase, mainly for two reasons: first, this pre-ZAHB phase is very short compared to other major evolutionary phases in the life of a star; and second, these pre-ZAHB stars are expected to overlap the loci occupied by asymptotic giant branch (AGB), HB and RGB stars observed in the color-magnitude diagram (CMD). We investigate the possibility of detecting these stars through stellar pulsations, since some of them are expected to rapidly cross the Cepheid/RR Lyrae instability strip in their route from the RGB tip to the ZAHB, thus becoming pulsating stars along the way. As a consequence of their very high evolutionary speed, some of these stars may present anomalously large period change rates. We constructed an extensive grid of stellar models and produced pre-ZAHB Monte Carlo simulations appropriate for the case of the Galactic globular cluster M3 (NGC 5272), where a number of RR Lyrae stars with high period change rates are found. Our results suggest that some -- but certainly not all -- of the RR Lyrae stars in M3 with large period change rates are in fact pre-ZAHB pulsators.Comment: Conference Proceedings HELAS Workshop on 'Synergies between solar and stellar modelling', Rome, June 2009, Astrophys. Space Sci., in the pres
    • …
    corecore