25 research outputs found

    Structure of the SnO2(110)-(4 x 1) Surface

    Get PDF
    Using surface x-ray diffraction (SXRD), quantitative low-energy electron diffraction (LEED), and density-functional theory (DFT) calculations, we have determined the structure of the (4 × 1) reconstruction formed by sputtering and annealing of the SnO2ð110Þ surface. We find that the reconstruction consists of an ordered arrangement of Sn3O3 clusters bound atop the bulk-terminated SnO2ð110Þ surface. The model was found by application of a DFT-based evolutionary algorithm with surface compositions based on SXRD, and shows excellent agreement with LEED and with previously published scanning tunneling microscopy measurements. The model proposed previously consisting of inplane oxygen vacancies is thus shown to be incorrect, and our result suggests instead that Sn(II) species in interstitial positions are the more relevant features of reduced SnO2ð110Þ surfaces

    High-Energy Surface X-ray Diffraction for Fast Surface Structure Determination

    No full text
    Understanding the interaction between surfaces and their surroundings is crucial in many materials-science fields such as catalysis, corrosion, and thin-film electronics, but existing characterization methods have not been capable of fully determining the structure of surfaces during dynamic processes, such as catalytic reactions, in a reasonable time frame. We demonstrate an x-ray-diffraction–based characterization method that uses high-energy photons (85 kiloelectron volts) to provide unexpected gains in data acquisition speed by several orders of magnitude and enables structural determinations of surfaces on time scales suitable for in situ studies. We illustrate the potential of high-energy surface x-ray diffraction by determining the structure of a Pd surface in situ during catalytic CO oxidation and follow dynamic restructuring of the surface with subsecond time resolution

    The influence of incommensurability on the long-range periodicity of the Pd(100)-(root 5 x root 5)R27 degrees-PdO(101)

    No full text
    The structural model of the (root 5 x root 5)R27 degrees PdO(101) surface oxide grown on Pd(100) has been proposed and refined by a number of authors over more than a decade. In the current contribution we discuss the long-range periodicity of this structure arising along one of the crystallographic directions due to its incommensurability with the substrate. Analyzing the results of surface sensitive diffraction studies, we determined a slight distortion of the previously reported perfect (root 5 x root 5)R27 degrees surface oxide unit cell. Considering it, we were able to achieve both qualitatively and quantitatively better fit to the experimental diffraction data than it was possible for the perfect structure. Further, taking into account the experimentally obtained scanning tunneling microscopy data and closely examining high-resolution patterns recorded by means of high-energy surface X-ray diffraction, we developed a qualitative structural model based on a larger non-orthogonal surface unit cell to shed more light on the long-range order of the PdO(101) surface oxide. The model comprises a shift of the atoms of the PdO perpendicularly to the direction of the incommensurability to correct for it. This structural model reproduces the fine details of the high-resolution diffraction patterns and qualitatively explains the periodic stripes of structural distortion observed in the images recorded by a scanning tunneling microscope

    Combining high-energy X-ray diffraction with Surface Optical Reflectance and Planar Laser Induced Fluorescence for operando catalyst surface characterization

    No full text
    We have combined three techniques, High Energy Surface X-Ray Diffraction (HESXRD), Surface Optical Reflectance, and Planar Laser Induced Fluorescence in an operando study of CO oxidation over a Pd(100) catalyst. We show that these techniques provide useful new insights such as the ability to verify that the finite region being probed by techniques such as HESXRD is representative of the sample surface as a whole. The combination is also suitable to determine when changes in gas composition or surface structure and/or morphology occur and to subsequently correlate them with high temporal resolution. In the study, we confirm previous results which show that the Pd(100) surface reaches high activity before an oxide can be detected. Furthermore, we show that the single crystal catalyst surface does not behave homogeneously, which we attribute to the surface being exposed to inhomogeneous gas conditions in mass transfer limited scenarios

    Combining high-energy X-ray diffraction with Surface Optical Reflectance and Planar Laser Induced Fluorescence for operando catalyst surface characterization

    No full text
    We have combined three techniques, High Energy Surface X-Ray Diffraction (HESXRD), Surface Optical Reflectance, and Planar Laser Induced Fluorescence in an operando study of CO oxidation over a Pd(100) catalyst. We show that these techniques provide useful new insights such as the ability to verify that the finite region being probed by techniques such as HESXRD is representative of the sample surface as a whole. The combination is also suitable to determine when changes in gas composition or surface structure and/or morphology occur and to subsequently correlate them with high temporal resolution. In the study, we confirm previous results which show that the Pd(100) surface reaches high activity before an oxide can be detected. Furthermore, we show that the single crystal catalyst surface does not behave homogeneously, which we attribute to the surface being exposed to inhomogeneous gas conditions in mass transfer limited scenario

    High-energy x-ray diffraction from surfaces and nanoparticles

    No full text
    High-energy surface-sensitive x-ray diffraction (HESXRD) is a powerful high-energy photon technique (E > 70 keV) that has in recent years proven to allow a fast data acquisition for the 3D structure determination of surfaces and nanoparticles under in situ and operando conditions. The use of a large-area detector facilitates the direct collection of nearly distortion-free diffraction patterns over a wide q range, including crystal truncation rods perpendicular to the surface and large-area reciprocal space maps from epitaxial nanoparticles, which is not possible in the conventional low-photon energy approach (E=10-20keV). Here, we present a comprehensive mathematical approach, explaining the working principle of HESXRD for both single-crystal surfaces and epitaxial nanostructures on single-crystal supports. The angular calculations used in conventional crystal truncation rod measurements at low-photon energies are adopted for the high-photon-energy regime, illustrating why and to which extent large reciprocal-space areas can be probed in stationary geometry with fixed sample rotation. We discuss how imperfections such as mosaicity and finite domain size aid in sampling a substantial part of reciprocal space without the need of rotating the sample. An exact account is given of the area probed in reciprocal space using such a stationary mode, which is essential for in situ or operando time-resolved experiments on surfaces and nanostructures

    Surface optical reflectance combined with x-ray techniques during gas-surface interactions

    No full text
    High energy surface x-ray diffraction (HESXRD), x-ray reflectivity (XRR), mass spectrometry (MS) and surface optical reflectance (SOR) have been combined to simultaneously obtain sub-second information on the surface structure and morphology from a Pd(100) model catalyst during in situ oxidation at elevated temperatures and pressures resulting in Pd bulk oxide formation. The results show a strong correlation between the HESXRD and SOR signal intensities during the experiment, enabling phase determination and a time-resolved thickness estimation of the oxide by HESXRD, complemented by XRR measurements. The experiments show a remarkable sensitivity of the SOR to changes in the surface phase and morphology, in particular to the initial stages of oxidation/reduction. The data imply that SOR can detect the formation of an ultrathin PdO surface oxide layer of only 2–3 Å thickness
    corecore