244 research outputs found

    In vivo nematicidal potential of camel milk on Heligmosomoides polygyrus gastro-intestinal nematode of rodents

    Get PDF
    Following our previous fi ndings on the in vitro anthelmintic effect of camel milk on Haemonchus contortus, the current study aimed at investigating its in vivo effect. Investigations were carried out using mice infected with Heligmosomoides polygyrus which is a parasite commonly used to test the effi cacy of anthelmintics. Thirty six Swiss white mice of both sexes aged 5 – 6 weeks old, and weighing between 20 and 25 g were orally infected with 0.5 ml dose of 100, 1-week-old H. polygyrus infective larvae (L3 ). After the pre-patent period, infected animals were randomly divided into 6 groups of 6 animals each. The nematicidal effi cacy of camel milk was monitored through faecal egg count reduction (FECR) and total worm count reduction (TWCR). Four doses (8.25; 16.5; 33.0; 66.0 ml/kg body weight (bw)) for fresh camel milk and 22 mg/kg bw for albendazole were studied using a bioassay. Albendazole and 4 % dimethylsulfoxide were included in the protocol as reference drug and placebo, respectively. For all tested doses except 8.25 ml/kg bw, camel milk was effective in vivo against H. polygyrus reducing both faecal egg count and worm count (p < 0.05). The dose 66 ml/kg bw showed the highest nematicidal activity causing a 76.75 % FECR and a 69.62 % TWCR 7 day after initiating the treatment. These results support the possible use of camel milk in the control of gastro-intestinal helminthiasis

    Community-based breeding programs (CBBPs) are being upscaled in Ethiopia and other African countries

    Get PDF

    Agricultural resource and risk management with multiperiod stochastics: A case of the mixed crop-livestock production system in the drylands of Jordan

    Get PDF
    Generally, agricultural production involves several challenges. In the drylands, it is further complicated by weather-related risks and resource degradation. In this paper, we present a case study of the mixed crop-livestock production system in Jordan. To better capture the nature of response farming in the drylands, we develop a methodology for using crop simulation models to directly generate data for optimizing production practices of an integrated crop-livestock producing household in a dynamic stochastic context. The approach optimizes producer's adaptations to random events, such as weather, which are realized throughout the planning horizon. To ensure the sustainability of the optimized production decisions, long-term valuations of end of horizon soil attributes are included in the objective function. This approach endogenizes the tradeoff between short-and long-run productivity. Model results show that due to the limited natural resource endowments and financial liquidity constraints of the typical farm households in the study area, we find these households have limited options. To optimally respond to weather conditions during the production season, better manage risk, and achieve improvements in soil attributes, a typical household would need larger farm size, larger flock, and better financial liquidity than it currently commands. Like all such models, the farm household model used in this paper is not suitable for drawing policy implications. Therefore, targeted analysis using appropriate sectoral or economy-wide models will be needed in the future to identify and test the efficacy of different policy and institutional interventions including land consolidation, establishment of producer and marketing cooperatives, access to financial services including agricultural credit, and crop insurance in expanding the resource base of farmers-thereby positioning them for higher earnings, ensuring soil conservation, and enhancing the sustainability of the production system

    Population dynamics of ticks infesting sheep in the arid steppes of Tunisia

    Get PDF
    This study aimed to determine tick population dynamics infesting sheep in Gafsa region (Central Tunisia). Ticks were collected monthly over a year, from October 2013 to September 2014, from 57‒64 randomly-included Barbarine-breed sheep. In total, 560 ticks were collected and identified. They belonged to two species: Rhipicephalus sanguineus sensu lato (98.6%) and Hyalomma excavatum (1.4%). Sheep were only infested from April to October with a maximum infestation prevalence (number of infested animals / number of examined animals) in August for R. sanguineus s.l. (83%), and in May for H. excavatum (7%). The highest infestation intensity (number of ticks / number of infested sheep) was 3.7 ticks per animal in August. These results should help sheep owners and veterinarians to implement efficient control programs against ticks and the pathogens they transmit
    corecore