842 research outputs found

    Results from the test bench of the Geometry Monitoring System of the ALICE Muon Spectrometer

    No full text
    We present the results obtained with the test bench of the Geometry Monitoring System (GMS) for the ALICE Muon Spectrometer. It consists in a mock up, reproducing at full scale, three half planes of the chambers 6, 7 and 8 of the spectrometer. We show that the GMS is able to measure transverse displacements with an accuracy of 1.5 microm. We show also that the resolution deteriorates by a factor 3 to 4 when thermal gradients are generated

    How Trade and Investment Agreements Affect Bilateral Foreign Direct Investment: Results from a Structural Gravity Model

    Get PDF
    The paper develops a new stand-alone structural gravity model for explaining bilateral FDI patterns. We employ the model to analyse the impact of preferential trade agreements (PTAs), bilateral investment treaties (BITs) and other policies on bilateral foreign direct investment (FDI). We use the UNCTAD global database on bilateral FDI stocks and flows. To control for the heterogeneous nature of PTAs, we employ two different indicators of PTA depth. We find that on average signing a PTA increases bilateral FDI stocks by around 30%. Nevertheless, we also find that ‘deeper’ or comprehensive PTAs (e.g., including provisions on investment, public procurement and intellectual property rights provisions) do not have a significantly different impact than signing regular PTAs. Belonging to the EU single market, on the other hand, has a strong impact and increases bilateral FDI by around 135%, and signing a BIT has an effect that is comparable to signing a PTA

    A novel mesocosm set-up reveals strong methane emission reduction in submerged peat moss Sphagnum cuspidatum by tightly associated methanotrophs

    Get PDF
    Wetlands present the largest natural sources of methane (CH_4) and their potential CH_4 emissions greatly vary due to the activity of CH_4-oxidizing bacteria associated with wetland plant species. In this study, the association of CH_4-oxidizing bacteria with submerged Sphagnum peat mosses was studied, followed by the development of a novel mesocosm set-up. This set-up enabled the precise control of CH_4 input and allowed for monitoring the dissolved CH_4in a Sphagnum moss layer while mimicking natural conditions. Two mesocosm set-ups were used in parallel: one containing a Sphagnum moss layer in peat water, and a control only containing peat water. Moss-associated CH_4 oxidizers in the field could reduce net CH_4 emission up to 93%, and in the mesocosm set-up up to 31%. Furthermore, CH_4 oxidation was only associated with Sphagnum, and did not occur in peat water. Especially methanotrophs containing a soluble methane monooxygenase enzyme were significantly enriched during the 32 day mesocosm incubations. Together these findings showed the new mesocosm setup is very suited to study CH_4 cycling in submerged Sphagnum moss community under controlled conditions. Furthermore, the tight associated between Sphagnum peat mosses and methanotrophs can significantly reduce CH_4 emissions in submerged peatlands

    Normothermic mouse functional MRI of acute focal thermostimulation for probing nociception

    Get PDF
    Combining mouse genomics and functional magnetic resonance imaging (fMRI) provides a promising tool to unravel the molecular mechanisms of chronic pain. Probing murine nociception via the blood oxygenation level-dependent (BOLD) effect is still challenging due to methodological constraints. Here we report on the reproducible application of acute noxious heat stimuli to examine the feasibility and limitations of functional brain mapping for central pain processing in mice. Recent technical and procedural advances were applied for enhanced BOLD signal detection and a tight control of physiological parameters. The latter includes the development of a novel mouse cradle designed to maintain whole-body normothermia in anesthetized mice during fMRI in a way that reflects the thermal status of awake, resting mice. Applying mild noxious heat stimuli to wildtype mice resulted in highly significant BOLD patterns in anatomical brain structures forming the pain matrix, which comprise temporal signal intensity changes of up to 6% magnitude. We also observed sub-threshold correlation patterns in large areas of the brain, as well as alterations in mean arterial blood pressure (MABP) in response to the applied stimulus

    Formula for proton-nucleus reaction cross section at intermediate energies and its application

    Full text link
    We construct a formula for proton-nucleus total reaction cross section as a function of the mass and neutron excess of the target nucleus and the proton incident energy. We deduce the dependence of the cross section on the mass number and the proton incident energy from a simple argument involving the proton optical depth within the framework of a black sphere approximation of nuclei, while we describe the neutron excess dependence by introducing the density derivative of the symmetry energy, L, on the basis of a radius formula constructed from macroscopic nuclear models. We find that the cross section formula can reproduce the energy dependence of the cross section measured for stable nuclei without introducing any adjustable energy dependent parameter. We finally discuss whether or not the reaction cross section is affected by an extremely low density tail of the neutron distribution for halo nuclei.Comment: 7 pages, 4 figures, added reference

    Improving mental health of student and novice nurses to prevent dropout:A systematic review

    Get PDF
    Aims: To provide: (a) an overview of interventions aimed at improving mental health of student or novice nurses; and (b) an evaluation of their effectiveness on dropout-related outcomes. Design: Systematic review. Data sources: Research papers published between January 1971–February 2019 were identified from the following databases: Embase, Medline, PsycInfo, CINAHL, ERIC, the Cochrane Library, Web of Science, and Google Scholar. Review methods: We followed the procedures recommended by the Editorial Board of the Cochrane Collaboration Back Review Group. We included peer-reviewed articles with a quantitative research design, examining interventions aimed at improving mental health of student and novice nurses and their effect on dropout-related outcomes. The large variation in studies prohibited statistical pooling and a synthesis without meta-analysis of studies was performed. Results: We identified 21 studies with three areas of focus: managing stress or stressors (N = 4); facilitating the transition to nursing practice (N = 14); and a combined approach (N = 3). Five studies showed a statistically significant effect on dropout-related outcomes. The overall risk of bias was high. Conclusion: A wide range of interventions are available, but the evidence for their effectiveness is limited. There is a need for high-quality studies in this field, preferably with a randomized controlled design

    Psychosocial work characteristics associated with distress and intention to leave nursing education; a one-year follow-up study

    Get PDF
    Background: Dropout in later years of the nursing degree programme involves lost investment and is a particular problem for both students and educators. Reasons for late dropout seem to be related to the work and learning environment of the clinical placement. Objectives: The aim of this study was to investigate associations between psychosocial work characteristics and distress and intention to leave nursing education among third-year nursing students. Design: A prospective cohort study. Setting A Bachelor of Nursing programme of a University of Applied Sciences in [name country]. Participants: 363 third-year nursing students. Methods: Baseline and one-year follow-up measurements were used from a prospective cohort study. Third-year nursing students were invited annually in May between 2016 and 2018. Psychosocial work characteristics were psychological demands, supervisor and co-worker support, and acts of offensive behaviour. Logistic regression analyses were used to build multivariate models. Results: Frequent exposure to violence (OR = 2.52, 95% CI: 1.29-4.92) was univariately associated with distress. In the multivariate model for distress, psychological demands (OR = 1.63, 95% CI: 1.05-2.52) and frequent exposure to violence (OR = 3.02, 95% CI: 1.48-6.19) were associated with distress. Supervisor support (OR = 0.54, 95% CI: 0.36-0.80) and co-worker support (OR = 0.41, 95% CI: 0.24-0.72) were negatively associated with intention to leave (i.e. were protective) in the univariate model. In the adjusted multivariate model, only co-worker support (OR = 0.50, 95% CI: 0.25-0.97) was a protective factor for an intention to leave. Conclusion: Psychological demands and frequent exposure to violence are risk factors for distress, and co-worker support is a protective factor reducing the intention to leave nursing education in the last stage of the programme. Improving the psychosocial working climate of nursing students may reduce the intention to leave at a late stage in nursing education, and hence actual late dropout

    G0^0 Electronics and Data Acquisition (Forward-Angle Measurements)

    Get PDF
    The G0^0 parity-violation experiment at Jefferson Lab (Newport News, VA) is designed to determine the contribution of strange/anti-strange quark pairs to the intrinsic properties of the proton. In the forward-angle part of the experiment, the asymmetry in the cross section was measured for e⃗p\vec{e}p elastic scattering by counting the recoil protons corresponding to the two beam-helicity states. Due to the high accuracy required on the asymmetry, the G0^0 experiment was based on a custom experimental setup with its own associated electronics and data acquisition (DAQ) system. Highly specialized time-encoding electronics provided time-of-flight spectra for each detector for each helicity state. More conventional electronics was used for monitoring (mainly FastBus). The time-encoding electronics and the DAQ system have been designed to handle events at a mean rate of 2 MHz per detector with low deadtime and to minimize helicity-correlated systematic errors. In this paper, we outline the general architecture and the main features of the electronics and the DAQ system dedicated to G0^0 forward-angle measurements.Comment: 35 pages. 17 figures. This article is to be submitted to NIM section A. It has been written with Latex using \documentclass{elsart}. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment In Press (2007

    Measurement of Tensor Polarization in Elastic Electron-Deuteron Scattering at Large Momentum Transfer

    Get PDF
    Tensor polarization observables (t20, t21 and t22) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7 (GeV/c)^2. The experiment was performed at the Jefferson Laboratory in Hall C using the electron HMS Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q^2 the deuteron charge form factors G_C and G_Q. They are in good agreement with relativistic calculations and disagree with pQCD predictions.Comment: 5 pages, 4 figures, for associated informations, see http://isnwww.in2p3.fr/hadrons/t20/t20_ang.html clarification about several topics, one figure has been had, extraction of form factors use AQ interpolation in our Q2 range onl
    • 

    corecore