research

A novel mesocosm set-up reveals strong methane emission reduction in submerged peat moss Sphagnum cuspidatum by tightly associated methanotrophs

Abstract

Wetlands present the largest natural sources of methane (CH_4) and their potential CH_4 emissions greatly vary due to the activity of CH_4-oxidizing bacteria associated with wetland plant species. In this study, the association of CH_4-oxidizing bacteria with submerged Sphagnum peat mosses was studied, followed by the development of a novel mesocosm set-up. This set-up enabled the precise control of CH_4 input and allowed for monitoring the dissolved CH_4in a Sphagnum moss layer while mimicking natural conditions. Two mesocosm set-ups were used in parallel: one containing a Sphagnum moss layer in peat water, and a control only containing peat water. Moss-associated CH_4 oxidizers in the field could reduce net CH_4 emission up to 93%, and in the mesocosm set-up up to 31%. Furthermore, CH_4 oxidation was only associated with Sphagnum, and did not occur in peat water. Especially methanotrophs containing a soluble methane monooxygenase enzyme were significantly enriched during the 32 day mesocosm incubations. Together these findings showed the new mesocosm setup is very suited to study CH_4 cycling in submerged Sphagnum moss community under controlled conditions. Furthermore, the tight associated between Sphagnum peat mosses and methanotrophs can significantly reduce CH_4 emissions in submerged peatlands

    Similar works