68 research outputs found

    Lightly Fluorinated Graphene as a Protective Layer for n-Type Si(111) Photoanodes in Aqueous Electrolytes

    Get PDF
    The behavior of n-Si(111) photoanodes covered by monolayer sheets of fluorinated graphene (F–Gr) was investigated under a range of chemical and electrochemical conditions. The electrochemical behavior of n-Si/F–Gr and np^+-Si/F–Gr photoanodes was compared to hydride-terminated n-Si (n-Si−H) and np+-Si−H electrodes in contact with aqueous Fe(CN)_6^(3-/4-) and Br_2/HBr electrolytes as well as in contact with a series of outer-sphere, one-electron redox couples in nonaqueous electrolytes. Illuminated n-Si/F–Gr and np^+-Si/F–Gr electrodes in contact with an aqueous K_3(Fe(CN)_6/K4(Fe(CN)_6 solutions exhibited stable short-circuit photocurrent densities of ∌10 mA cm^(–2) for 100,000 s (>24 h), in comparison to bare Si electrodes, which yielded nearly a complete photocurrent decay over ∌100 s. X-ray photoelectron spectra collected before and after exposure to aqueous anodic conditions showed that oxide formation at the Si surface was significantly inhibited for Si electrodes coated with F–Gr relative to bare Si electrodes exposed to the same conditions. The variation of the open-circuit potential for n-Si/F–Gr in contact with a series of nonaqueous electrolytes of varying reduction potential indicated that the n-Si/F–Gr did not form a buried junction with respect to the solution contact. Further, illuminated n-Si/F−Gr electrodes in contact with Br_2/HBr(aq) were significantly more electrochemically stable than n-Si−H electrodes, and n-Si/F−Gr electrodes coupled to a Pt catalyst exhibited ideal regenerative cell efficiencies of up to 5% for the oxidation of Br^– to Br_2

    Complete Genome Sequences of Chop, DelRio, and GrandSlam, Three Gordonia Phages Isolated from Soil in Central Arkansas

    Get PDF
    Chop, DelRio, and GrandSlam are phage with a Siphoviridae morphotype isolated from soil in Arkansas using the host Gordonia terrae 3612. All three are temperate, and their genomes share at least 96% nucleotide identity. These phage are assigned to cluster DI based on gene content similarity to other sequenced actinobacteriophage

    Comparative genomics of Cluster O mycobacteriophages

    Get PDF
    Mycobacteriophages - viruses of mycobacterial hosts - are genetically diverse but morphologically are all classified in the Caudovirales with double-stranded DNA and tails. We describe here a group of five closely related mycobacteriophages - Corndog, Catdawg, Dylan, Firecracker, and YungJamal - designated as Cluster O with long flexible tails but with unusual prolate capsids. Proteomic analysis of phage Corndog particles, Catdawg particles, and Corndog-infected cells confirms expression of half of the predicted gene products and indicates a non-canonical mechanism for translation of the Corndog tape measure protein. Bioinformatic analysis identifies 8-9 strongly predicted SigA promoters and all five Cluster O genomes contain more than 30 copies of a 17 bp repeat sequence with dyad symmetry located throughout the genomes. Comparison of the Cluster O phages provides insights into phage genome evolution including the processes of gene flux by horizontal genetic exchange

    Genome sequences of four cluster P mycobacteriophages

    Get PDF
    Four bacteriophages infecting Mycobacterium smegmatis mc2155 (three belonging to subcluster P1 and one belonging to subcluster P2) were isolated from soil and sequenced. All four phages are similar in the left arm of their genomes, but the P2 phage differs in the right arm. All four genomes contain features of temperate phages

    Instructional Models for Course-Based Research Experience (CRE) Teaching

    Get PDF
    The course-based research experience (CRE) with its documented educational benefits is increasingly being implemented in science, technology, engineering, and mathematics education. This article reports on a study that was done over a period of 3 years to explicate the instructional processes involved in teaching an undergraduate CRE. One hundred and two instructors from the established and large multi-institutional SEA-PHAGES program were surveyed for their understanding of the aims and practices of CRE teaching. This was followed by large-scale feedback sessions with the cohort of instructors at the annual SEA Faculty Meeting and subsequently with a small focus group of expert CRE instructors. Using a qualitative content analysis approach, the survey data were analyzed for the aims of inquiry instruction and pedagogical practices used to achieve these goals. The results characterize CRE inquiry teaching as involving three instructional models: 1) being a scientist and generating data; 2) teaching procedural knowledge; and 3) fostering project ownership. Each of these models is explicated and visualized in terms of the specific pedagogical practices and their relationships. The models present a complex picture of the ways in which CRE instruction is conducted on a daily basis and can inform instructors and institutions new to CRE teaching

    Experimental characterization of two archaeal inosine 5'-monophosphate cyclohydrolases.

    No full text
    There is variability as to how archaea catalyze the final step of de novo purine biosynthesis to form inosine 5'-monophosphate (IMP) from 5-formamidoimidazole-4-carboxamide ribonucleotide (FAICAR). Although non-archaea almost uniformly use the bifunctional PurH protein, which has an N-terminal IMP cyclohydrolase (PurH2) fused to a C-terminal folate-dependent aminoimidazole-4-carboxamide ribonucleotide (AICAR) formyltransferase (PurH1) domain, a survey of the genomes of archaea reveals use of PurH2 (with or without fusion to PurH1), the "euryarchaeal signature protein" PurO, or an unidentified crenarchaeal IMP cyclohydrolase. In this report, we present the cloning and functional characterization of two representatives of the known IMP cyclohydrolase families. The locus TK0430 in Thermococcus kodakarensis encodes a PurO-type IMP cyclohydrolase with demonstrated activity despite its position in a cluster of apparently redundant biosynthetic genes, the first functional characterization of a PurO from a non-methanogen. Kinetic characterization reveals a Km for FAICAR of 1.56 ± 0.39 ΌM and a kcat of 0.48 ± 0.04 s-1. The locus AF1811 from Archaeoglobus fulgidus encodes a PurH2-type IMP cyclohydrolase. This Archaeoglobus fulgidus PurH2 has a Km of 7.8 ± 1.8 ΌM and kcat of 1.32 ± 0.14 s-1, representing the first characterization of an archaeal PurH2 and the first characterization of PurH2 that naturally occurs unfused to an AICAR formyltransferase domain. Each of these two characterized IMP cyclohydrolases converts FAICAR to IMP in vitro, and each cloned gene allows the growth on purine-deficient media of an E. coli purine auxotroph lacking the purH2 gene
    • 

    corecore