7,225 research outputs found
The Wilson loop from a Dyson equation
The Dyson equation proposed for planar temporal Wilson loops in the context
of supersymmetric gauge theories is critically analysed thereby exhibiting its
ingredients and approximations involved. We reveal its limitations and identify
its range of applicability in non-supersymmetric gauge theories. In particular,
we show that this equation is applicable only to strongly asymmetric planar
Wilson loops (consisting of a long and a short pair of loop segments) and as a
consequence the Wilsonian potential can be extracted only up to intermediate
distances. By this equation the Wilson loop is exclusively determined by the
gluon propagator. We solve the Dyson equation in Coulomb gauge for the temporal
Wilson loop with the instantaneous part of the gluon propagator and for the
spatial Wilson loop with the static gluon propagator obtained in the
Hamiltonian approach to continuum Yang-Mills theory and on the lattice. In both
cases we find a linearly rising color potential.Comment: 12 pages, 7 figure
Q-ball formation in the MSSM with explicit CP violation
Q-balls generically exist in the supersymmetric extensions of the standard
model. Taking into account the additional sources of CP violation, which are
naturally accomodated by the supersymmetric models, it is shown that the Q-ball
matter depends additively on individual CP phases, whereas mass per unit charge
in the Q-ball depends only on the relative phases. There are regions of the
parameter space where there is no stable Q-ball solution in the CP-conserving
limit whereas finite CP phases induce a stable Q-ball.Comment: 6 p
Unitarity of the tree approximation to the Glauber AA amplitude for large A
The nucleus-nucleus Glauber amplitude in the tree approximation is studied
for heavy participant nuclei. It is shown that, contrary to previous published
results, it is not unitary for realistic values of nucleon-nucleon
cross-sections.Comment: 15 pages, 1 figure, 1 table. Submitted to Yad. Fi
Geometric approach to asymptotic expansion of Feynman integrals
We present an algorithm that reveals relevant contributions in
non-threshold-type asymptotic expansion of Feynman integrals about a small
parameter. It is shown that the problem reduces to finding a convex hull of a
set of points in a multidimensional vector space.Comment: 6 pages, 2 figure
A Study of a Mini-drift GEM Tracking Detector
A GEM tracking detector with an extended drift region has been studied as
part of an effort to develop new tracking detectors for future experiments at
RHIC and for the Electron Ion Collider that is being planned for BNL or JLAB.
The detector consists of a triple GEM stack with a small drift region that was
operated in a mini TPC type configuration. Both the position and arrival time
of the charge deposited in the drift region were measured on the readout plane
which allowed the reconstruction of a short vector for the track traversing the
chamber. The resulting position and angle information from the vector could
then be used to improve the position resolution of the detector for larger
angle tracks, which deteriorates rapidly with increasing angle for conventional
GEM tracking detectors using only charge centroid information. Two types of
readout planes were studied. One was a COMPASS style readout plane with 400
micron pitch XY strips and the other consisted of 2x10mm2 chevron pads. The
detector was studied in test beams at Fermilab and CERN, along with additional
measurements in the lab, in order to determine its position and angular
resolution for incident track angles up to 45 degrees. Several algorithms were
studied for reconstructing the vector using the position and timing information
in order to optimize the position and angular resolution of the detector for
the different readout planes. Applications for large angle tracking detectors
at RHIC and EIC are also discussed.Comment: Submitted to the IEEE Transactions on Nuclear Scienc
- …