167 research outputs found

    Estudio no destructivo del interior de piezas de valor histórico mediante gammagrafías

    Get PDF
    La tecnología de Tomografía de Hormigón Armado desarrollada por THASA ha sido aplicada al estudio de piezas ornamentales y otras de valor histórico con el objeto de examinar el interior de las mismas e investigar, en algunos casos, la existencia, configuración y condición de refuerzos metálicos y en otro caso, la existencia de huecos producidos por termitas en vigas de madera. En este trabajo se discuten detalles metodológicos y resultados alcanzados en los casos de las estatuas ubicadas en el coronamiento del Palacio de Tribunales en la Ciudad Autónoma de Buenos Aires, en dragones colgantes de las torres de la Basílica de Luján y en las vigas del techo de la Capilla Doméstica, construida en 1660 y declarada patrimonio de la humanidad por la UNESCO, ubicada en la manzana jesuítica en la Ciudad de Córdoba. El carácter pionero de la investigación de oquedades en madera realizada en este último caso hizo necesario la construcción de modelos de simulación que resultan de utilidad para otras aplicaciones similares

    Application of a semi-microscopic core-particle coupling method to the backbending in odd deformed nuclei

    Get PDF
    In two previous papers, the Kerman-Klein-Donau-Frauendorf (KKDF) model was used to study rotational bands of odd deformed nuclei. Here we describe backbending for odd nuclei using the same model. The backbending in the neighboring even nuclei is described by a phenomenological two band model, and this core is then coupled to a large single-particle space, as in our previous work. The results obtained for energies and M1 transition rates are compared with experimental data for 165Lu and for energies alone to the experimental data for 179W. For the case of 165Lu comparison is also made with previous theoretical work.Comment: 16 pages including 8 figure(postscript), submitted to Phys.Rev.

    DYNAMIC STRAY CURRENT MEASURING METHODS IN URBAN AREAS

    Get PDF
    In areas where urban tracks are used as public transportation, dynamic stray currents cause high maintenance costs for the tracks and metal structures near the tracks. Stray currents caused by rail vehicles depend on many factors (traffic density, vehicle speed, acceleration and deceleration, soil and track moisture), so it is very difficult to get a clear picture of the harmfulness of the stray current based on the results of a single field measurement. However, there are several measurement methods that can be used to determine the presence of stray currents and predict appropriate track maintenance actions. Some of these methods are described in this article, namely the use of stray current mapper, measurement of rail potential and rail current, measurement at the stray current collection system, and the use of nondestructive sensors. In track construction, measuring the electrical potential between rail and ground is one of the most common methods of detecting the damaging influence of stray current

    Influence of Impedance Interaction & Comparability on Spectral Aggregation (2-150 kHz) in DC Grids

    Get PDF
    The reported higher levels of conducted emissions in DC grids in the 2-150 kHz range are caused by the spectral aggregations resulting from the converter's switching harmonics. The dominant influence for these spectral aggregates is the impedance correlation between the DC-link capacitor and the converters. This paper analyses the impedance interaction & comparability between the DC-link and the DC/DC converters at the point of common coupling in the DC grid. Simulations with four DC-link capacitors and forty parallel DC/DC converters are conducted, with full (non-linear) and equivalent-source (linear) models for comparison. The dB/JV values for the first spectral aggregate decrease as the augmenting DC-side impedance becomes comparable with the smaller DC-link impedance, lowering the electromagnetic interference in the DC grid. This understanding may provide insights into the DC-link capacitor design from an electromagnetic compatibility perspective, and towards developing a framework for DC power quality standards in the 2-150 kHz range

    Pantograph-To-OHL Arc: Conducted Effects in DC Railway Supply System

    Get PDF
    The electrical arc occurring in the sliding contact between the supply contact line and the current collector (pantograph) of an electrical locomotive is a fast transient phenomenon able to degrade progressively the line-To-pantograph contact quality and, consequently, the continuity of operation. In order to increase the energy efficiency of the railway system, an inexpensive solution is constituted by the detection of the arc event by the analysis of voltage and current measurements already available on-board train. An essential activity to reach this objective is to set up a reliable electrical model of the railway system in which the arc events originate. To this end, this paper presents a combination of experimental and simulation analysis for the development of an electrical model of a direct current (dc) 3 kV railway system, which is aimed at better understanding the propagation of conducted effects generated by arc events. First, a laboratory experimental activity is carried out to investigate the electrical dynamic characteristics of the arc in a controlled environment. Then, a model of the dc railway system is derived and validated by using the experimental data collected in a measurement campaign on-board train. Finally, a sensitivity analysis of the main model parameters is carried out

    Rotationally Invariant Hamiltonians for Nuclear Spectra Based on Quantum Algebras

    Full text link
    The rotational invariance under the usual physical angular momentum of the SUq(2) Hamiltonian for the description of rotational nuclear spectra is explicitly proved and a connection of this Hamiltonian to the formalisms of Amal'sky and Harris is provided. In addition, a new Hamiltonian for rotational spectra is introduced, based on the construction of irreducible tensor operators (ITO) under SUq(2) and use of q-deformed tensor products and q-deformed Clebsch-Gordan coefficients. The rotational invariance of this SUq(2) ITO Hamiltonian under the usual physical angular momentum is explicitly proved, a simple closed expression for its energy spectrum (the ``hyperbolic tangent formula'') is introduced, and its connection to the Harris formalism is established. Numerical tests in a series of Th isotopes are provided.Comment: 34 pages, LaTe

    New features of collective motion of intrinsic degrees of freedom. Toward a possible way to classify the intrinsic states

    Full text link
    Three exactly solvable Hamiltonians of complex structure are studied in the framework of a semi-classical approach. The quantized trajectories for intrinsic coordinates correspond to energies which may be classified in collective bands. For two of the chosen Hamiltonians the symmetry SU2xSU2 is the appropriate one to classify the eigenvalues in the laboratory frame. Connections of results presented here with the molecular spectrum and Moszkowski model are pointed out. The present approach suggests that the intrinsic states, which in standard formalisms are heading rotational bands, are forming themselves "rotational" bands, the rotations being performed in a fictious boson space.Comment: 33 pages, 9 figure
    corecore