9,261 research outputs found

    A study of stress-free living bone and its application to space flight

    Get PDF
    Observations of animals and human subjects in weightless space flight (Skylab and COSMOS) document altered bone metabolism. Bone metabolism is affected by a number of local and systemic factors. The calcification and growth of transplanted bone is independent of local muscle, nervous, and mechanical forces; therefore, transplanted bone would provide data on the role of local vs. systematic factors. Bone metabolism in living transplanted bone, devoid of stress, was investigated as a possible tool for the investigation of countermeasures against disuse bone loss. An animal model using Sprague-Dawley rats was developed for transplantation of femur bone tissue on a nutrient vascular pedicel. The long term course of these implants was assessed through the measure of regional and total bone mineral, blood flow, and methylene diphosphonate (MDP) uptake. Clomid, an estrogen agonist/antagonist, was shown to protect bone from disuse loss of minerals by retarding trabecular and cortical resorption

    Monolithic InP-Based Grating Spectrometer for Wavelength-Division Multiplexed Systems at 1.5 ÎŒm

    Get PDF
    A monolithic InP-based grating spectrometer for use in wavelength-division multiplexed systems at 1.5 ÎŒm is reported. The spectrometer uses a single etched reflective focusing diffraction grating and resolves >50 channels at 1 nm spacing with a ~0.3nm channel width and at least 19dB channel isolation. Operation is essentially of the state of the input polarisation

    The Peierls substitution in an engineered lattice potential

    Full text link
    Artificial gauge fields open new possibilities to realize quantum many-body systems with ultracold atoms, by engineering Hamiltonians usually associated with electronic systems. In the presence of a periodic potential, artificial gauge fields may bring ultracold atoms closer to the quantum Hall regime. Here, we describe a one-dimensional lattice derived purely from effective Zeeman-shifts resulting from a combination of Raman coupling and radiofrequency magnetic fields. In this lattice, the tunneling matrix element is generally complex. We control both the amplitude and the phase of this tunneling parameter, experimentally realizing the Peierls substitution for ultracold neutral atoms.Comment: 6 pages, 5 figure
    • 

    corecore