48 research outputs found

    Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    Full text link
    We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE scintillator-tungsten analogue hadronic calorimeter. The data were recorded at the CERN Super Proton Synchrotron in 2011. The analysis includes measurements of the calorimeter response to each particle type as well as measurements of the energy resolution and studies of the longitudinal and radial shower development for selected particles. The results are compared to Geant4 simulations (version 9.6.p02). In the study of the energy resolution we include previously published data with beam momenta from 1 GeV to 10 GeV recorded at the CERN Proton Synchrotron in 2010.Comment: 35 pages, 21 figures, 8 table

    Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter

    Get PDF
    The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range from 10 to 80 GeV/c. Both longitudinal and radial development of hadron showers are parametrised with two-component functions. The parametrisation is fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics lists from Geant4 version 9.6. The parameters extracted from data and simulated samples are compared for the two types of hadrons. The response to pions and the ratio of the non-electromagnetic to the electromagnetic calorimeter response, h/e, are estimated using the extrapolation and decomposition of the longitudinal profiles.Comment: 38 pages, 19 figures, 5 tables; author list changed; submitted to JINS

    Improving documentation by repairing event logs

    No full text
    In enterprises, business process models are used for capturing as-is business processes. During process enactment correct documentation is important to ensure quality, to support compliance analysis, and to allow for correct accounting. Missing documentation of performed activities can be directly translated into lost income, if accounting is based on documentation. Still, many processes are manually documented in enterprises. As a result, activities might be missing from the documentation, even though they were performed. In this paper, we make use of process knowledge captured in process models, and provide a method to repair missing entries in the logs. The repaired logs can be used for direct feedback to ensure correct documentation, i.e., participants can be asked to check, whether they forgot to document activities that should have happened according to the process models. We realize the repair by combining stochastic Petri nets, alignments, and Bayesian networks. We evaluate the results using both synthetic data and real event data from a Dutch hospital. Keywords: documentation quality, missing data, stochastic Petri nets, Bayesian network
    corecore