1,215 research outputs found

    ORFEUS II Far-UV Spectroscopy of AM Herculis

    Get PDF
    Six high-resolution (\lambda/\Delta\lambda ~ 3000) far-UV (\lambda\lambda = 910-1210 \AA) spectra of the magnetic cataclysmic variable AM Herculis were acquired in 1996 November during the flight of the ORFEUS-SPAS II mission. AM Her was in a high optical state at the time of the observations, and the spectra reveal emission lines of O VI \lambda\lambda 1032, 1038, C III \lambda 977, \lambda 1176, and He II \lambda 1085 superposed on a nearly flat continuum. Continuum flux variations can be described as per Gansicke et al. by a ~ 20 kK white dwarf with a ~ 37 kK hot spot covering a fraction f~0.15 of the surface of the white dwarf, but we caution that the expected Lyman absorption lines are not detected. The O VI emission lines have narrow and broad component structure similar to that of the optical emission lines, with radial velocities consistent with an origin in the irradiated face of the secondary and the accretion funnel, respectively. The density of the narrow- and broad-line regions is n_{nlr} ~ 3\times 10^{10} cm^{-3} and n_{blr} ~ 1\times 10^{12} cm^{-3}, respectively, yet the narrow-line region is optically thick in the O VI line and the broad-line region is optically thin; apparently, the velocity shear in the broad-line region allows the O VI photons to escape, rendering the gas effectively optically thin. Unexplained are the orbital phase variations of the emission-line fluxes.Comment: 15 pages, 6 Postscript figures; LaTeX format, uses aaspp4.sty; table2.tex included separately because it must be printed sideways - see instructions in the file; accepted on April 17, 1998 for publication in The Astrophysical Journa

    Stellar Motion around Spiral Arms: Gaia Mock Data

    Get PDF
    We compare the stellar motion around a spiral arm created in two different scenarios, transient/co-rotating spiral arms and density-wave-like spiral arms. We generate Gaia mock data from snapshots of the simulations following these two scenarios using our stellar population code, SNAPDRAGONS, which takes into account dust extinction and the expected Gaia errors. We compare the observed rotation velocity around a spiral arm similar in position to the Perseus arm, and find that there is a clear difference in the velocity features around the spiral arm between the co-rotating spiral arm and the density-wave-like spiral arm. Our result demonstrates that the volume and accuracy of the Gaia data are sufficient to clearly distinguish these two scenarios of the spiral arms.Comment: 5 pages, 1 figure, to appear in the proceedings of "The Milky Way Unravelled by Gaia: GREAT Science from the Gaia Data Releases", Barcelona, 1-5 December 2014, eds. N. Walton, F. Figueras, C. Soubira

    Variability of the Accretion Stream in the Eclipsing Polar EP Dra

    Get PDF
    We present the first high time resolution light curves for six eclipses of the magnetic cataclysmic variable EP Dra, taken using the superconducting tunnel junction imager S-Cam2. The system shows a varying eclipse profile between consecutive eclipses over the two nights of observation. We attribute the variable stream eclipse after accretion region ingress to a variation in the amount and location of bright material in the accretion stream. This material creates an accretion curtain as it is threaded by many field lines along the accretion stream trajectory. We identify this as the cause of absorption evident in the light curves when the system is in a high accretion state. We do not see direct evidence in the light curves for an accretion spot on the white dwarf; however, the variation of the stream brightness with the brightness of the rapid decline in flux at eclipse ingress indicates the presence of some form of accretion region. This accretion region is most likely located at high colatitude on the white dwarf surface, forming an arc shape at the foot points of the many field lines channeling the accretion curtain.Comment: Accepted for publication in MNRAS (7 pages

    Polarimetry of the Type Ia Supernova SN 1996X

    Full text link
    We present broad-band and spectropolarimetry of the Type Ia SN 1996X obtained on April 14, 1996 (UT), and broad-band polarimetry of SN 1996X on May 22,1996, when the supernova was about a week before and 4 weeks after optical maximum, respectively. The Stokes parameters derived from the broad-band polarimetry are consistent with zero polarization. The spectropolarimetry, however, shows broad spectral features which are due intrinsically to an asymmetric SN atmosphere. The spectral features in the flux spectrum and the polarization spectrum show correlations in the wavelength range from 4900 AA up to 5500 AA. The degree of this intrinsic component is low (<0.3 %). Theoretical polarization spectra have been calculated. It is shown that the polarization spectra are governed by line blending. Consequently, for similar geometrical distortions, the residual polarization is smaller by about a factor of 2 to 3 compared to the less blended Type II atmosphere, making it intrinsically harder to detect asphericities in SNIa. Comparison with theoretical model polarization spectra shows a resemblance to the observations. Taken literally, this implies an asphericity of about 11 % in the chemical distribution in the region of partial burning. This may not imperil the use of Type Ia supernovae as standard candles for distance determination, but nontheless poses a source of uncertainty. SN 1996X is the first Type Ia supernova for which spectropolarimetry revealed a polarized component intrinsic to the supernova and the first Type Ia with spectropolarimetry well prior to optical maximum.Comment: 7 pages, 5 figures, macros 'aas2pp4.sty,psfig.tex'. LaTeX Style. Astrophysical Journal Letters, submitted September 199

    A panchromatic analysis of starburst galaxy M82: Probing the dust properties

    Get PDF
    (Abridged) We combine NUV, optical and IR imaging of the nearby starburst galaxy M82 to explore the properties of the dust both in the interstellar medium of the galaxy and the dust entrained in the superwind. The three NUV filters of Swift/UVOT enable us to probe in detail the properties of the extinction curve in the region around the 2175A bump. The NUV colour-colour diagram strongly rules out a Calzetti-type law, which can either reflect intrinsic changes in the dust properties or in the star formation history compared to starbursts well represented by such an attenuation law. We emphasize that it is mainly in the NUV region where a standard Milky-Way-type law is preferred over a Calzetti law. The age and dust distribution of the stellar populations is consistent with the scenario of an encounter with M81 in the recent 400 Myr. The radial gradients of the NUV and optical colours in the superwind region support the hypothesis that the emission in the wind cone is driven by scattering from dust grains entrained in the ejecta. The observed wavelength dependence reveals either a grain size distribution n(a)a2.5n(a)\propto a^{-2.5}, where aa is the size of the grain, or a flatter distribution with a maximum size cutoff, suggesting that only small grains are entrained in the supernovae-driven wind.Comment: 12 pages, 12 figures, 3 tables, MNRAS, in pres

    Probing the Pulsar Wind Nebula of PSR B0355+54

    Get PDF
    We present XMM-Newton and Chandra X-ray observations of the middle-aged radio pulsar PSR B0355+54. Our X-ray observations reveal emission not only from the pulsar itself, but also from a compact diffuse component extending ~50'' in the opposite direction to the pulsar's proper motion. There is also evidence for the presence of fainter diffuse emission extending ~5' from the point source. The compact diffuse feature is well-fitted with a power-law, the index of which is consistent with the values found for other pulsar wind nebulae. The morphology of the diffuse component is similar to the ram-pressure confined pulsar wind nebulae detected for other sources. The X-ray emission from the pulsar itself is described well by a thermal plus power-law fit, with the thermal emission most likely originating in a hot polar cap.Comment: 9 pages (uses emulateapj.cls), 8 figures, 2 tables, accepted for publication in Ap

    Towards meta-interpretive learning of programming language semantics

    Get PDF
    We introduce a new application for inductive logic programming: learning the semantics of programming languages from example evaluations. In this short paper, we explored a simplified task in this domain using the Metagol meta-interpretive learning system. We highlighted the challenging aspects of this scenario, including abstracting over function symbols, nonterminating examples, and learning non-observed predicates, and proposed extensions to Metagol helpful for overcoming these challenges, which may prove useful in other domains.Comment: ILP 2019, to appea

    Multi-epoch Doppler tomography and polarimetry of QQ Vul

    Get PDF
    We present multi-epoch high-resolution spectroscopy and photoelectric polarimetry of the long-period polar (AM Herculis star) QQ Vul. The blue emission lines show several distinct components, the sharpest of which can unequivocally be assigned to the illuminated hemisphere of the secondary star and used to trace its orbital motion. This narrow emission line can be used in combination with Nai-absorption lines from the photosphere of the companion to build a stable long-term ephemeris for the star: inferior conjunction of the companion occurs at HJD = 244 8446.4710(5)+E×0. d 15452011(11). The polarization curves are dissimilar at different epochs, thus supporting the idea of fundamental changes of the accretion geometry, e.g. between one- and two-pole accretion modes. The linear polarization pulses display a random scatter by 0.2 phase units and are not suitable for the determination of the binary period. The polarization data suggest that the magnetic (dipolar) axis has a co-latitude of 23 ◦ , an azimuth of −50 ◦, and an orbital inclination between 50 ◦ and 70 ◦. Doppler images of blue emission and red absorption lines show a clear separatio

    The birthplace and age of the isolated neutron star RX J1856.5-3754

    Full text link
    X-ray observations unveiled various types of radio-silent Isolated Neutron Stars (INSs), phenomenologically very diverse, e.g. the Myr old X-ray Dim INS (XDINSs) and the kyr old magnetars. Although their phenomenology is much diverse, the similar periods (P=2--10 s) and magnetic fields (~10^{14} G) suggest that XDINSs are evolved magnetars, possibly born from similar populations of supermassive stars. One way to test this hypothesis is to identify their parental star clusters by extrapolating backward the neutron star velocity vector in the Galactic potential. By using the information on the age and space velocity of the XDINS RX J1856.5-3754, we computed backwards its orbit in the Galactic potential and searched for its parental stellar cluster by means of a closest approach criterion. We found a very likely association with the Upper Scorpius OB association, for a neutron star age of 0.42+/-0.08 Myr, a radial velocity V_r^NS =67+/- 13$ km s^{-1}, and a present-time parallactic distance d_\pi^NS = 123^{+11}_{-15} pc. Our result confirms that the "true" neutron star age is much lower than the spin-down age (tau_{sd}=3.8 Myrs), and is in good agreement with the cooling age, as computed within standard cooling scenarios. The mismatch between the spin-down and the dynamical/cooling age would require either an anomalously large breaking index (n~20) or a decaying magnetic field with initial value B_0 ~ 10^{14} G. Unfortunately, owing to the uncertainty on the age of the Upper Scorpius OB association and the masses of its members we cannot yet draw firm conclusions on the estimated mass of the RX J1856.5-3754 progenitor.Comment: 6 pages, accepted for publication on Monthly Notices of the Royal Astronomical Societ

    A Photometric and Spectroscopic Study of the Cataclysmic Variable ST LMi during 2005-2006

    Full text link
    We present orbit-resolved spectroscopic and photometric observations of the polar ST LMi during its recent low and high states. In the low state spectra, we report the presence of blue and red satellites to the H-alpha emission line; the velocities and visibility of the satellites vary with phase. This behavior is similar to emission line profile variations recently reported in the low state of AM Her, which were interpreted as being due to magnetically-confined gas motions in large loops near the secondary. Our low-state spectroscopy of ST LMi is discussed in terms of extreme chromospheric activity on the secondary star. Concurrent photometry indicates that occasional low-level accretion may be present, as well as cool regions on the secondary near L1. Furthermore, we report a new ``extreme low-state'' of the system at V~18.5mag. Our orbital high-state spectroscopy reveals changes in the emission line profiles with orbital phases that are similar to those reported by earlier high-state studies. The complicated emission line profiles generally consist of two main components. The first has radial velocity variations identical to that of the major emission H-alpha component seen in the low state. The second is an additional red-shifted component appearing at the phases of maximum visibility of the accreting column of the white dwarf; it is interpreted as being due to infall velocities on the accreting magnetic pole of the white dwarf. At the opposite phases, an extended blue emission wing appears on the emission line profiles. We confirm the presence of a broad absorption feature near 6275Ang which has been previously identified as Zeeman sigma(-) absorption component to H-alpha. This feature appears at just those phases when the accretion pole region is mostly directly visible and most nearly face-on to the observer.Comment: 16 pages, 1 table, 17 figures. To appear in the Astronomical Journa
    corecore