16,701 research outputs found

    Study of Staebler-Wronsky degradation effect in a Si:H based P-I-N solar cells

    Get PDF
    The objective of this study is to improve the stability and efficiency of thin solar cells with emphasis on a-Si:H devices. The research project was broken down into three main phases. The first involves designing and building a UHV glow discharge system; the second involves making good quality films and eventually efficient cells; the final phase will be analytical

    Hypersonic Research Vehicle (HRV) real-time flight test support feasibility and requirements study. Part 2: Remote computation support for flight systems functions

    Get PDF
    The requirements are assessed for the use of remote computation to support HRV flight testing. First, remote computational requirements were developed to support functions that will eventually be performed onboard operational vehicles of this type. These functions which either cannot be performed onboard in the time frame of initial HRV flight test programs because the technology of airborne computers will not be sufficiently advanced to support the computational loads required, or it is not desirable to perform the functions onboard in the flight test program for other reasons. Second, remote computational support either required or highly desirable to conduct flight testing itself was addressed. The use is proposed of an Automated Flight Management System which is described in conceptual detail. Third, autonomous operations is discussed and finally, unmanned operations

    Heat transport and flow structure in rotating Rayleigh-B\'enard convection

    Get PDF
    Here we summarize the results from our direct numerical simulations (DNS) and experimental measurements on rotating Rayleigh-B\'enard (RB) convection. Our experiments and simulations are performed in cylindrical samples with an aspect ratio \Gamma varying from 1/2 to 2. Here \Gamma=D/L, where D and L are the diameter and height of the sample, respectively. When the rotation rate is increased, while a fixed temperature difference between the hot bottom and cold top plate is maintained, a sharp increase in the heat transfer is observed before the heat transfer drops drastically at stronger rotation rates. Here we focus on the question of how the heat transfer enhancement with respect to the non-rotating case depends on the Rayleigh number Ra, the Prandtl number Pr, and the rotation rate, indicated by the Rossby number Ro. Special attention will be given to the influence of the aspect ratio on the rotation rate that is required to get heat transport enhancement. In addition, we will discuss the relation between the heat transfer and the large scale flow structures that are formed in the different regimes of rotating RB convection and how the different regimes can be identified in experiments and simulations.Comment: 12 pages, 10 figure

    Towards an optical potential for rare-earths through coupled channels

    Full text link
    The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations, defined by nuclear deformations. Proper treatment of such excitations is often essential to the accurate description of reaction experimental data. Previous works have applied different models to specific nuclei with the purpose of determining angular-integrated cross sections. In this work, we present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions in a consistent manner for neutron-induced reactions on nuclei in the rare-earth region. This specific subset of the nuclide chart was chosen precisely because of a clear static deformation pattern. We analyze the convergence of the coupled-channel calculations regarding the number of states being explicitly coupled. Inspired by the work done by Dietrich \emph{et al.}, a model for deforming the spherical Koning-Delaroche optical potential as function of quadrupole and hexadecupole deformations is also proposed. We demonstrate that the obtained results of calculations for total, elastic and inelastic cross sections, as well as elastic and inelastic angular distributions correspond to a remarkably good agreement with experimental data for scattering energies above around a few MeV.Comment: 7 pages, 6 figures. Submitted to the proceedings of the XXXVI Reuni\~ao de Trabalho de F\'{\i}sica Nuclear no Brasil (XXXVI Brazilian Workshop on Nuclear Physics), held in Maresias, S\~ao Paulo, Brazil in September 2013, which should be published on AIP Conference Proceeding Series. arXiv admin note: substantial text overlap with arXiv:1311.1115, arXiv:1311.042

    Interaction between current imbalance and magnetization in LHC cables

    Get PDF
    The quality of the magnetic field in superconducting accelerator magnets is associated with the properties of the superconducting cable. Current imbalances due to coupling currents ÂżI, as large as 100 A, are induced by spatial variations of the field sweep rate and contact resistances. During injection at a constant field all magnetic field components show a decay behavior. The decay is caused by a diffusion of coupling currents into the whole magnet. This results in a redistribution of the transport current among the strands and causes a demagnetization of the superconducting cable. As soon as the field is ramped up again after the end of injection, the magnetization rapidly recovers from the decay and follows the course of the original hysteresis curve. In order to clarify the interactions between the changes in current and magnetization during injection the authors performed a number of experiments. A magnetic field with a spatially periodic pattern was applied to a superconducting wire in order to simulate the coupling behavior in a magnet. This model system was placed into a stand for magnetization measurements and the influence of different powering conditions was analyze

    Predicted band structures of III-V semiconductors in wurtzite phase

    Full text link
    While non-nitride III-V semiconductors typically have a zincblende structure, they may also form wurtzite crystals under pressure or when grown as nanowhiskers. This makes electronic structure calculation difficult since the band structures of wurtzite III-V semiconductors are poorly characterized. We have calculated the electronic band structure for nine III-V semiconductors in the wurtzite phase using transferable empirical pseudopotentials including spin-orbit coupling. We find that all the materials have direct gaps. Our results differ significantly from earlier {\it ab initio} calculations, and where experimental results are available (InP, InAs and GaAs) our calculated band gaps are in good agreement. We tabulate energies, effective masses, and linear and cubic Dresselhaus zero-field spin-splitting coefficients for the zone-center states. The large zero-field spin-splitting coefficients we find may lead to new functionalities for designing devices that manipulate spin degrees of freedom
    • 

    corecore