5 research outputs found

    Chaos in Neural Oscillators Induced by Unidirectional Electrical Coupling

    No full text
    We demonstrate that unidirectional electrical coupling between two periodically spiking Hindmarsh-Rose neurons induces bistability in the system. We find that for certain values of intermediate coupling, the slave neuron exhibits coexistence of two attractors. One of them is the periodic orbit similar to the original attractor without coupling, and the other one is a chaotic attractor or a periodic orbit with higher periodicity, depending on the coupling strength. For strong coupling, the slave neuron is monostable at a periodic orbit similar to the attractor of the master neuron. When the master and slave neurons are in a similar attractor they are completely synchronized, whereas being in different states they are in generalized synchronization. We also present the experimental evidence of this behavior with electronic circuits based on the Hindmarsh-Rose model

    Synchronization-based computation through networks of coupled oscillators

    No full text
    The mesoscopic activity of the brain is strongly dynamical, while at the same time exhibits remarkable computational capabilities. In order to examine how these two features coexist, here we show that the patterns of synchronized oscillations displayed by networks of neural mass models, representing cortical columns, can be used as substrates for Boolean-like computations. Our results reveal that the same neural mass network may process different combinations of dynamical inputs as different logical operations or combinations of them. This dynamical feature of the network allows it to process complex inputs in a very sophisticated manner. The results are reproduced experimentally with electronic circuits of coupled Chua oscillators, showing the robustness of this kind of computation to the intrinsic noise and parameter mismatch of the coupled oscillators. We also show that the information-processing capabilities of coupled oscillations go beyond the simple juxtaposition of logic gatesWork supported by the Ministerio de Economia y Competividad (Spain) and FEDER through projects FIS2012-37655-C02-01 and FIS2013-41057-P. JG acknowledges support from the ICREA Academia programme and from the Generalitat de Catalunya (project 2014SGR0974

    RNA binding protein regulation and cross-talk in the control of AU-rich mRNA fate

    No full text
    mRNA metabolism is tightly orchestrated by highly-regulated RNA Binding Proteins (RBPs) that determine mRNA fate, thereby influencing multiple cellular functions across biological contexts. Here, we review the interplay between six well-known RBPs (TTP, AUF-1, KSRP, HuR, TIA-1, and TIAR) that recognize AU-rich elements (AREs) at the 3' untranslated regions of mRNAs, namely ARE-RBPs. Examples of the links between their cross-regulations and modulation of their targets are analyzed during mRNA processing, turnover, localization, and translational control. Furthermore, ARE recognition can be self-regulated by several factors that lead to the prevalence of one RBP over another. Consequently, we examine the factors that modulate the dynamics of those protein-RNA transient interactions to better understand the final consequences of the regulation mediated by ARE-RBPs. For instance, factors controlling the RBP isoforms, their conformational state or their post-translational modifications (PTMs) can strongly determine the fate of the protein-RNA complexes. Moreover, mRNA specific sequence and secondary structure or subtle environmental changes are also key determinants to take into account. To sum up, the whole understanding of such a fine tuned regulation is a challenge for future research and requires the integration of all the available structural and functional data by in vivo, in vitro and in silico approaches.Financial support was provided by the Andalusian Government (P11-CVI-7216, BIO198); the Spanish Ministry of Economy, Industry and Competitiveness (BFU2015-71017-P); the Spanish Ministry of Education, Culture and Sports (FPU013/04373, FPU016/01513) and the Ramón Areces Foundation.Peer reviewe
    corecore