2,068 research outputs found

    Different Motion Cues Are Used to Estimate Time-to-arrival for Frontoparallel and Loming Trajectories

    Get PDF
    Estimation of time-to-arrival for moving objects is critical to obstacle interception and avoidance, as well as to timing actions such as reaching and grasping moving objects. The source of motion information that conveys arrival time varies with the trajectory of the object raising the question of whether multiple context-dependent mechanisms are involved in this computation. To address this question we conducted a series of psychophysical studies to measure observersā€™ performance on time-to-arrival estimation when object trajectory was specified by angular motion (ā€œgap closureā€ trajectories in the frontoparallel plane), looming (colliding trajectories, TTC) or both (passage courses, TTP). We measured performance of time-to-arrival judgments in the presence of irrelevant motion, in which a perpendicular motion vector was added to the object trajectory. Data were compared to models of expected performance based on the use of different components of optical information. Our results demonstrate that for gap closure, performance depended only on the angular motion, whereas for TTC and TTP, both angular and looming motion affected performance. This dissociation of inputs suggests that gap closures are mediated by a separate mechanism than that used for the detection of time-to-collision and time-to-passage. We show that existing models of TTC and TTP estimation make systematic errors in predicting subject performance, and suggest that a model which weights motion cues by their relative time-to-arrival provides a better account of performance

    Integration Mechanisms for Heading Perception

    Get PDF
    Previous studies of heading perception suggest that human observers employ spatiotemporal pooling to accommodate noise in optic flow stimuli. Here, we investigated how spatial and temporal integration mechanisms are used for judgments of heading through a psychophysical experiment involving three different types of noise. Furthermore, we developed two ideal observer models to study the components of the spatial information used by observers when performing the heading task. In the psychophysical experiment, we applied three types of direction noise to optic flow stimuli to differentiate the involvement of spatial and temporal integration mechanisms. The results indicate that temporal integration mechanisms play a role in heading perception, though their contribution is weaker than that of the spatial integration mechanisms. To elucidate how observers process spatial information to extract heading from a noisy optic flow field, we compared psychophysical performance in response to random-walk direction noise with that of two ideal observer models (IOMs). One model relied on 2D screen-projected flow information (2D-IOM), while the other used environmental, i.e., 3D, flow information (3D-IOM). The results suggest that human observers compensate for the loss of information during the 2D retinal projection of the visual scene for modest amounts of noise. This suggests the likelihood of a 3D reconstruction during heading perception, which breaks down under extreme levels of noise

    Evaluating the Potential of Using 5-Azacytidine as an Epimutagen

    Get PDF
    A number of early flowering lines were induced when 5-azacytidine was applied to germinating flax (Linum usitatissimum L.) seed. The genetics of these lines indicate that the induced changes are epigenetic and probably result from demethylation of the genomic DNA at loci that affect flowering age. Although the growth and development of three stable early flowering lines are altered and the percentage of filled seed was reduced in all three lines compared with controls, measures of seed productivity demonstrated that harvest index was unaffected in two of the lines. In the third, harvest index was lower than normal and both seed set per capsule and seed mass per 100 seed were reduced. Furthermore, six generations after induction this line began to display relatively high levels of polyembryony. The late appearance of this twinning and other aspects related to working with lines induced by 5-azacytidine and using 5-azacytidine as an epimutagen are discussed

    Continuous-flow laboratory simulation of stream water quality changes downstream of an untreated wastewater discharge.

    Get PDF
    In regions of the world with poor provision of wastewater treatment, raw sewage is often discharged directly into surface waters. This paper describes an experimental evaluation of the fate of two organic chemicals under these conditions using an artificial channel cascade fed with a mix of settled sewage and river water at its upstream end and operated under continuous steady-state conditions. The experiments underpin an environmental risk assessment methodology based on the idea of an ā€œimpact zoneā€ (IZ) ā€“ the zone downstream of wastewater emission in which water quality is severely impaired by high concentrations of unionised ammonia, nitrite and biochemical oxygen demand (BOD). Radiolabelled dodecane-6-benzene sulphonate (DOBS) and aniline hydrochloride were used as the model chemical and reference compound respectively. Rapid changes in 14C counts were observed with flow-time for both these materials. These changes were most likely to be due to complete mineralisation. A dissipation half-life of approximately 7.1 h was observed for the 14C label with DOBS. The end of the IZ was defined as the point at which the concentration of both unionised ammonia and nitrite fell below their respective predicted no-effect concentrations for salmonids. At these points in the cascade, approximately 83 and 90% of the initial concentration of 14C had been removed from the water column, respectively. A simple model of mineral nitrogen transformations based on Michaelisā€“Menten kinetics was fitted to observed concentrations of NH4, NO2 and NO3. The cascade is intended to provide a confirmatory methodology for assessing the ecological risks of chemicals under direct discharge co

    Meiotic drive does not cause condition-dependent reduction of the sexual ornament in stalk-eyed flies

    Get PDF
    Meiotic drive systems are associated with low frequency chromosomal inversions. These are expected to accumulate deleterious mutations due to reduced recombination and low effective population size. We test this prediction using the ā€œsexā€ratioā€ (SR) meiotic drive system of the Malaysian stalkā€eyed fly Teleopsis dalmanni. SR is associated with a large inversion (or inversions) on the X chromosome. In particular, we study eyespan in males carrying the SR chromosome, as this trait is a highly exaggerated, sexually dimorphic trait, known to have heightened conditionā€dependent expression. Larvae were raised in low and high larval food stress environments. SR males showed reduced eyespan under the low and high stress treatments but there was no evidence of a conditionā€dependent decrease in eyespan under high stress. Similar but more complex patterns were observed for female eyespan, with evidence of additivity under low stress and heterosis under high stress. These results do not support the hypothesis that reduced sexual ornament size in meiotic drive males is due to a conditionā€dependent response to the putative increase in mutation load. Instead, reduced eyespan likely reflects compensatory resource allocation to different traits in response to driveā€mediated destruction of sperm

    Differential Cortical Activation During the Perception of Moving Objects Along Different Trajectories

    Get PDF
    Detection of 3D object-motion trajectories depends on the integration of two distinct visual cues: translational displacement and looming. Electrophysiological studies have identified distinct neuronal populations, whose activity depends on the precise motion cues present in the stimulus. This distinction, however, has been less clear in humans, and it is confounded by differences in the behavioral task being performed. We analyzed whole-brain fMRI, while subjects performed a common time-to-arrival task for objects moving along three trajectories: moving directly towards the observer (collision course), with trajectories parallel to the line of sight (passage course), and with trajectories perpendicular to the line of sight (gap closure). We found that there was substantial overlap in the pattern of activation associated with each of the three tasks, with differences among conditions limited to the human motion area (hMT+), which showed greater activation extent in the gap closure condition than for either collision or passage courses. These results support a common substrate for temporal judgments of an objectā€™s time-to-arrival, wherein the special cases of object motion directly toward, or perpendicular to, the observer represent two extremes within the broader continuum of 3D passage trajectories relative to the observer

    Wholly Biobased, Highly Stretchable, Hydrophobic, and Self-healing Thermoplastic Elastomer

    Get PDF
    Renewable polymers with excellent stretchability and self-healing ability are interesting for a wide range of applications. A novel type of wholly biobased, self-healing, polyamide-based thermoplastic elastomer was synthesized using a fatty dimer acid and a fatty dimer amine, both containing multiple alkyl chains, through facile one-pot condensation polymerization under different polymerization times. The resulting elastomer shows superior stretchability (up to 2286%), high toughness, and excellent shape recovery after being stretched to different strains. This elastomer also displays high room-temperature autonomous self-healing efficiency after fracture and zero water uptake during water immersion. The highly entangled main chain, the multiple dangling chains, the abundant reversible physical bonds, the intermolecular diffusion, and the low ratio of amide to methylene group within the elastomer are responsible for these extraordinary properties. The polymerization time influences the properties of the elastomer. The use of the optimal self-healing thermoplastic elastomer in anticorrosion coating, piezoresistive sensing, and highly stretchable fibers is also demonstrated. The elastomer coating prevents stainless-steel products from corrosion in a salty environment due to its superhydrophobicity. The elastomer serves as a robust flexible substrate for creating self-healing piezoresistive sensors with excellent repeatability and self-healing efficiency. The elastomer fiber yarn can be stretched to 950% of its original length confirming its outstanding stretchability
    • ā€¦
    corecore