8,571 research outputs found

    Thermodynamical properties of metric fluctuations during inflation

    Full text link
    I study a thermodynamical approach to scalar metric perturbations during the inflationary stage. In the power-law expanding universe here studied, I find a negative heat capacity as a manifestation of superexponential growing for the number of states in super Hubble scales. The power spectrum depends on the Gibbons-Hawking and Hagedorn temperatures.Comment: 7 pages, no figures (accepted to publication in General Relativity and Gravitation

    Fresh inflation and decoherence of super Hubble fluctuations

    Full text link
    I study a stochastic approach to the recently introduced fresh inflation model for super Hubble scales. I find that the state loses its coherence at the end of the fresh inflationary period as a consequence of the damping of the interference function in the reduced density matrix. This fact should be a consequence of a) the relative evolutions of both the scale factor and the horizon and b) the additional thermal and dissipative effects. This implies a relevant difference with respect to supercooled inflationary scenarios which require a very rapid expansion of the scale factor to give the decoherence of super Hubble fluctuations.Comment: version with minor changes. To appear in Phys. Rev.

    Warm inflation and scalar perturbations of the metric

    Get PDF
    A second-order expansion for the quantum fluctuations of the matter field was considered in the framework of the warm inflation scenario. The friction and Hubble parameters were expended by means of a semiclassical approach. The fluctuations of the Hubble parameter generates fluctuations of the metric. These metric fluctuations produce an effective term of curvature. The power spectrum for the metric fluctuations can be calculated on the infrared sector.Comment: 10 pages, no figures, to be published in General Rel. and Gravitatio

    A confirmation of agreement of different approaches for scalar gauge-invariant metric perturbations during inflation

    Full text link
    We revisit an extension of the well-known formalism for gauge-invariant scalar metric fluctuations, to study the spectrums for both, the inflaton and gauge invariant (scalar) metric fluctuations in the framework of a single field inflationary model where the quasi-exponential expansion is driven by an inflation which is minimally coupled to gravity. The proposal here examined is valid also for fluctuations with large amplitude, but for cosmological scales, where vector and tensor perturbations can be neglected and the fluid is irrotacional.Comment: Version accepted in EPJC with new title. 11 pages, no figure

    Fresh inflation: a warm inflationary model from a zero temperature initial state

    Full text link
    A two-components mixture fluid which complies with the gamma law is considered in the framework of inflation with finite temperature. The model is developed for a quartic scalar potential without symmetry breaking. The radiation energy density is assumed to be zero when inflation starts and remains below the GUT temperature during the inflationary stage. Furthermore, provides the necessary number of e-folds and sufficient radiation energy density to GUT baryogenesis can take place near the minimum energetic configuration.Comment: 11 pages, no figures, to be published in Phys. Rev.

    Chemical composition of stellar populations in Omega Centauri

    Full text link
    We derive abundances of Fe, Na, O, and s-elements from GIRAFFE@VLT spectra for more than 200 red giant stars in the Milky Way satellite Omega Centauri. Our preliminary results are that: (i) we confirm that Omega Centauri exibiths large star-to-star metallicity variations (\sim 1.4 dex); (ii) the metallicity distribution reveals the presence of at least five stellar populations with different [Fe/H]; (iii) a clear Na-O anticorrelation is clearly observed for the metal-poor and metal-intermediate populations while apparently the anticorrelation disappears for the most metal-rich populations. Interestingly the Na level grows with iron.Comment: 2 pages, 2 figures. To appear in the proceedings of IAU Symp. 268 "Light elements in the Universe" (C. Charbonnel, M. Tosi, F. Primas, C. Chiappini, eds., Cambridge Univ. Press

    Scale invariant scalar metric fluctuations during inflation: non-perturbative formalism from a 5D vacuum

    Full text link
    We extend to 5D an approach of a 4D non-perturbative formalism to study scalar metric fluctuations of a 5D Riemann-flat de Sitter background metric. In contrast with the results obtained in 4D, the spectrum of cosmological scalar metric fluctuations during inflation can be scale invariant and the background inflaton field can take sub-Planckian values.Comment: final version to be published in Eur. Phys. J.

    Ground-based astrometry with wide field imagers. V. Application to near-infrared detectors: HAWK-I@VLT/ESO

    Full text link
    High-precision astrometry requires accurate point-spread function modeling and accurate geometric-distortion corrections. This paper demonstrates that it is possible to achieve both requirements with data collected at the high acuity wide-field K-band imager (HAWK-I), a wide-field imager installed at the Nasmyth focus of UT4/VLT ESO 8m telescope. Our final astrometric precision reaches ~3 mas per coordinate for a well-exposed star in a single image with a systematic error less than 0.1 mas. We constructed calibrated astro-photometric catalogs and atlases of seven fields: the Baade's Window, NGC 6656, NGC 6121, NGC 6822, NGC 6388, NGC 104, and the James Webb Space Telescope calibration field in the Large Magellanic Cloud. We make these catalogs and images electronically available to the community. Furthermore, as a demonstration of the efficacy of our approach, we combined archival material taken with the optical wide-field imager at the MPI/ESO 2.2m with HAWK-I observations. We showed that we are able to achieve an excellent separation between cluster members and field objects for NGC 6656 and NGC 6121 with a time base-line of about 8 years. Using both HST and HAWK-I data, we also study the radial distribution of the SGB populations in NGC 6656 and conclude that the radial trend is flat within our uncertainty. We also provide membership probabilities for most of the stars in NGC 6656 and NGC 6121 catalogs and estimate membership for the published variable stars in these two fields.Comment: 36 pages (included appendix), 13 tables, 35 figures (26 in low resolution), accepted for publication in Astronomy and Astrophysics. Online materials will be soon available on CDS. Meanwhile, online materials can be requested directly to the first autho
    corecore