5,724 research outputs found
Central limit approximations for Markov population processes with countably many types
When modelling metapopulation dynamics, the influence of a single patch on
the metapopulation depends on the number of individuals in the patch. Since
there is usually no obvious natural upper limit on the number of individuals in
a patch, this leads to systems in which there are countably infinitely many
possible types of entity. Analogous considerations apply in the transmission of
parasitic diseases. In this paper, we prove central limit theorems for quite
general systems of this kind, together with bounds on the rate of convergence
in an appropriately chosen weighted norm.Comment: 24 page
Interacting vector fields in Relativity without Relativity
Barbour, Foster and \'{O} Murchadha have recently developed a new framework,
called here {\it{the 3-space approach}}, for the formulation of classical
bosonic dynamics. Neither time nor a locally Minkowskian structure of spacetime
are presupposed. Both arise as emergent features of the world from
geodesic-type dynamics on a space of 3-dimensional metric--matter
configurations. In fact gravity, the universal light cone and Abelian gauge
theory minimally coupled to gravity all arise naturally through a single common
mechanism. It yields relativity -- and more -- without presupposing relativity.
This paper completes the recovery of the presently known bosonic sector within
the 3-space approach. We show, for a rather general ansatz, that 3-vector
fields can interact among themselves only as Yang--Mills fields minimally
coupled to gravity.Comment: Replaced with final version accepted by Classical and Quantum Gravity
(14 pages, no figures
A law of large numbers approximation for Markov population processes with countably many types
When modelling metapopulation dynamics, the influence of a single patch on
the metapopulation depends on the number of individuals in the patch. Since the
population size has no natural upper limit, this leads to systems in which
there are countably infinitely many possible types of individual. Analogous
considerations apply in the transmission of parasitic diseases. In this paper,
we prove a law of large numbers for rather general systems of this kind,
together with a rather sharp bound on the rate of convergence in an
appropriately chosen weighted norm.Comment: revised version in response to referee comments, 34 page
A law of large numbers approximation for Markov population processes with countably many types
When modelling metapopulation dynamics, the influence of a single patch on the metapopulation depends on the number of individuals in the patch. Since the population size has no natural upper limit, this leads to systems in which there are countably infinitely many possible types of individual. Analogous considerations apply in the transmission of parasitic diseases. In this paper, we prove a law of large numbers for quite general systems of this kind, together with a rather sharp bound on the rate of convergence in an appropriately chosen weighted â 1 nor
Hydrographic data from R/V endeavor cruise #90
The final cruise of the NSF sponsored Warm Core Rings Program studied a Warm Core Ring (WCR) in the Fall of 1982 as it formed from a large northward meander of the Gulf Stream. This ring, known as 82-H or the eighth ring identified in 1982, formed over the New England Seamounts near 39.5 deg N, 65 deg W. Surveys using Expendable Bathythermographs, Conductivity-Temperature-Depth-Oxygen stations and Doppler Current Profiling provide a look at the genesis of a WCR. These measurements reveal that WCR 82-H separated from the Gulf Stream sometime between October 2-5. This ring was a typical WCR with a diameter of about 200 km and speeds in the high velocity core of the 175 cm/sec. Satellite imagery of 82-H following the cruise showed that it drifted WSW in the Slope Water region at almost 9 km/day, had at least one interaction with the Gulf Stream and was last observed on February 8, 1983 at 39 deg N, 72 deg W
Quenched QCD at finite density
Simulations of quenched at relatively small but {\it nonzero} chemical
potential on lattices indicate that the nucleon
screening mass decreases linearly as increases predicting a critical
chemical potential of one third the nucleon mass, , by extrapolation.
The meson spectrum does not change as increases over the same range, from
zero to . Past studies of quenched lattice QCD have suggested that
there is phase transition at . We provide alternative
explanations for these results, and find a number of technical reasons why
standard lattice simulation techniques suffer from greatly enhanced
fluctuations and finite size effects for ranging from to
. We find evidence for such problems in our simulations, and suggest
that they can be surmounted by improved measurement techniques.Comment: 23 pages, Revte
Scale-Invariant Gravity: Geometrodynamics
We present a scale-invariant theory, conformal gravity, which closely
resembles the geometrodynamical formulation of general relativity (GR). While
previous attempts to create scale-invariant theories of gravity have been based
on Weyl's idea of a compensating field, our direct approach dispenses with this
and is built by extension of the method of best matching w.r.t scaling
developed in the parallel particle dynamics paper by one of the authors. In
spatially-compact GR, there is an infinity of degrees of freedom that describe
the shape of 3-space which interact with a single volume degree of freedom. In
conformal gravity, the shape degrees of freedom remain, but the volume is no
longer a dynamical variable. Further theories and formulations related to GR
and conformal gravity are presented.
Conformal gravity is successfully coupled to scalars and the gauge fields of
nature. It should describe the solar system observations as well as GR does,
but its cosmology and quantization will be completely different.Comment: 33 pages. Published version (has very minor style changes due to
changes in companion paper
Random Matrices and the Convergence of Partition Function Zeros in Finite Density QCD
We apply the Glasgow method for lattice QCD at finite chemical potential to a
schematic random matrix model (RMM). In this method the zeros of the partition
function are obtained by averaging the coefficients of its expansion in powers
of the chemical potential. In this paper we investigate the phase structure by
means of Glasgow averaging and demonstrate that the method converges to the
correct analytically known result. We conclude that the statistics needed for
complete convergence grows exponentially with the size of the system, in our
case, the dimension of the Dirac matrix. The use of an unquenched ensemble at
does not give an improvement over a quenched ensemble.
We elucidate the phenomenon of a faster convergence of certain zeros of the
partition function. The imprecision affecting the coefficients of the
polynomial in the chemical potential can be interpeted as the appearance of a
spurious phase. This phase dominates in the regions where the exact partition
function is exponentially small, introducing additional phase boundaries, and
hiding part of the true ones. The zeros along the surviving parts of the true
boundaries remain unaffected.Comment: 17 pages, 14 figures, typos correcte
Scale-invariant gravity: Spacetime recovered
The configuration space of general relativity is superspace - the space of
all Riemannian 3-metrics modulo diffeomorphisms. However, it has been argued
that the configuration space for gravity should be conformal superspace - the
space of all Riemannian 3-metrics modulo diffeomorphisms and conformal
transformations. Recently a manifestly 3-dimensional theory was constructed
with conformal superspace as the configuration space. Here a fully
4-dimensional action is constructed so as to be invariant under conformal
transformations of the 4-metric using general relativity as a guide. This
action is then decomposed to a (3+1)-dimensional form and from this to its
Jacobi form. The surprising thing is that the new theory turns out to be
precisely the original 3-dimensional theory. The physical data is identified
and used to find the physical representation of the theory. In this
representation the theory is extremely similar to general relativity. The
clarity of the 4-dimensional picture should prove very useful for comparing the
theory with those aspects of general relativity which are usually treated in
the 4-dimensional framework.Comment: Replaced with final version: minor changes to tex
Imaginary chemical potential and finite fermion density on the lattice
Standard lattice fermion algorithms run into the well-known sign problem at
real chemical potential. In this paper we investigate the possibility of using
imaginary chemical potential, and argue that it has advantages over other
methods, particularly for probing the physics at finite temperature as well as
density. As a feasibility study, we present numerical results for the partition
function of the two-dimensional Hubbard model with imaginary chemical
potential.
We also note that systems with a net imbalance of isospin may be simulated
using a real chemical potential that couples to I_3 without suffering from the
sign problem.Comment: 9 pages, LaTe
- âŠ