23,030 research outputs found

    Chemical structure matching using correlation matrix memories

    Get PDF
    This paper describes the application of the Relaxation By Elimination (RBE) method to matching the 3D structure of molecules in chemical databases within the frame work of binary correlation matrix memories. The paper illustrates that, when combined with distributed representations, the method maps well onto these networks, allowing high performance implementation in parallel systems. It outlines the motivation, the neural architecture, the RBE method and presents some results of matching small molecules against a database of 100,000 models

    Supporting 64-bit global indices in Epetra and other Trilinos packages -- Techniques used and lessons learned

    Full text link
    The Trilinos Project is an effort to facilitate the design, development, integration and ongoing support of mathematical software libraries within an object-oriented framework. It is intended for large-scale, complex multiphysics engineering and scientific applications. Epetra is one of its basic packages. It provides serial and parallel linear algebra capabilities. Before Trilinos version 11.0, released in 2012, Epetra used the C++ int data-type for storing global and local indices for degrees of freedom (DOFs). Since int is typically 32-bit, this limited the largest problem size to be smaller than approximately two billion DOFs. This was true even if a distributed memory machine could handle larger problems. We have added optional support for C++ long long data-type, which is at least 64-bit wide, for global indices. To save memory, maintain the speed of memory-bound operations, and reduce further changes to the code, the local indices are still 32-bit. We document the changes required to achieve this feature and how the new functionality can be used. We also report on the lessons learned in modifying a mature and popular package from various perspectives -- design goals, backward compatibility, engineering decisions, C++ language features, effects on existing users and other packages, and build integration

    Quantum Error Correction on Linear Nearest Neighbor Qubit Arrays

    Get PDF
    A minimal depth quantum circuit implementing 5-qubit quantum error correction in a manner optimized for a linear nearest neighbor architecture is described. The canonical decomposition is used to construct fast and simple gates that incorporate the necessary swap operations. Simulations of the circuit's performance when subjected to discrete and continuous errors are presented. The relationship between the error rate of a physical qubit and that of a logical qubit is investigated with emphasis on determining the concatenated error correction threshold.Comment: 4 pages, 5 figure

    Closed-form expressions for the numerical dispersion and reflection in FEM simulations involving biaxial materials

    Get PDF
    Closed-form expressions for the numerical errors caused by finite-element discretization of problems involving materials of biaxial permittivity and permeability tensors are developed. In particular, we derive expressions for the numerical dispersion and reflection in both first-order node and edge basis function finite-element formulations in an equilateral triangular mesh. Results using these closed-form expressions are compared to practical numerical simulations. The application of these expressions to the analysis of the performance of the perfectly matched layer boundary is suggeste

    Layered architecture for quantum computing

    Full text link
    We develop a layered quantum computer architecture, which is a systematic framework for tackling the individual challenges of developing a quantum computer while constructing a cohesive device design. We discuss many of the prominent techniques for implementing circuit-model quantum computing and introduce several new methods, with an emphasis on employing surface code quantum error correction. In doing so, we propose a new quantum computer architecture based on optical control of quantum dots. The timescales of physical hardware operations and logical, error-corrected quantum gates differ by several orders of magnitude. By dividing functionality into layers, we can design and analyze subsystems independently, demonstrating the value of our layered architectural approach. Using this concrete hardware platform, we provide resource analysis for executing fault-tolerant quantum algorithms for integer factoring and quantum simulation, finding that the quantum dot architecture we study could solve such problems on the timescale of days.Comment: 27 pages, 20 figure

    Vacuum Photon Splitting in Lorentz-Violating Quantum Electrodynamics

    Get PDF
    Radiative corrections arising from Lorentz violation in the fermion sector induce a nonzero amplitude for vacuum photon splitting. At one loop, the on-shell amplitude acquires both CPT-even and CPT-odd contributions forbidden in conventional electrodynamics.Comment: 4 pages, minor wording changes, references added, accepted in Physical Review Letter

    Effect of physician reminders on preventive care: meta-analysis of randomized clinical trials

    Get PDF
    pre-printThe objective of this study was to assess the clinical value of the physician reminder, an information intervention, in increasing compliance for selected preventive health care measures. Meta-analysis was used to combine the quantitative evidence from randomized controlled clinical trials meeting the eligibility criteria. The trials included in this meta-analysis were conducted in a family or internal medicine clinic. Physician reminders were used in the trials to influence utilization and compliance of preventive health care activities. The use of physician reminders for preventive health care activities resulted in a homogeneous effect for the subcategories of cervical cancer screening (test for heterogeneity X22 = 4.122, non significant) and tetanus immunization (test for heterogeneity X22 = 3.139, non-significant). Similarly, the odds ratio from the combination of evidence from the three cervical cancer screening trials was significant (1.180, 95 percent CI: 1.020 to 1.339). The resulting odds ratio from the combination of evidence from the three tetanus immunization trials was significant (2.819, 95 percent CI: 2.664 to 2.975). The results of the meta-analyses for cervical cancer screening and tetanus immunizations indicate that physician reminders are an effective information intervention and can improve compliance for these two preventive health care procedures. Based on the results of this meta-analysis, further trials testing the effect of physician reminders on tetanus immunization would be unnecessary and probably unethical
    corecore