16 research outputs found

    Agricultural Management and Climatic Change Are the Major Drivers of Biodiversity Change in the UK

    Get PDF
    Action to reduce anthropogenic impact on the environment and species within it will be most effective when targeted towards activities that have the greatest impact on biodiversity. To do this effectively we need to better understand the relative importance of different activities and how they drive changes in species’ populations. Here, we present a novel, flexible framework that reviews evidence for the relative importance of these drivers of change and uses it to explain recent alterations in species’ populations. We review drivers of change across four hundred species sampled from a broad range of taxonomic groups in the UK. We found that species’ population change (~1970–2012) has been most strongly impacted by intensive management of agricultural land and by climatic change. The impact of the former was primarily deleterious, whereas the impact of climatic change to date has been more mixed. Findings were similar across the three major taxonomic groups assessed (insects, vascular plants and vertebrates). In general, the way a habitat was managed had a greater impact than changes in its extent, which accords with the relatively small changes in the areas occupied by different habitats during our study period, compared to substantial changes in habitat management. Of the drivers classified as conservation measures, low-intensity management of agricultural land and habitat creation had the greatest impact. Our framework could be used to assess the relative importance of drivers at a range of scales to better inform our policy and management decisions. Furthermore, by scoring the quality of evidence, this framework helps us identify research gaps and needs

    State of nature

    Get PDF
    For the first time ever, the UK’s wildlife organisations have joined forces to undertake a health check of nature in the UK and its Overseas Territories. 60% of the 3,148 UK species we assessed have declined over the last 50 years and 31% have declined strongly. Half of the species assessed have shown strong changes in their numbers or range, indicating that recent environmental changes are having a dramatic impact on nature in the UK. Species with specific habitat requirements seem to be faring worse than generalist species. A new Watchlist Indicator, developed to measure how conservation priority species are faring, shows that their overall numbers have declined by 77% in the last 40 years, with little sign of recovery. Of more than 6,000 species that have been assessed using modern Red List criteria, more than one in 10 are thought to be under threat of extinction in the UK. Our assessment looks back over 50 years at most, yet there were large declines in the UK’s wildlife prior to this, linked to habitat loss. The UK’s Overseas Territories hold a wealth of wildlife of huge international importance and over 90 of these species are at high risk of global extinction. There is a lack of knowledge on the trends of most of the UK’s species. As a result, we can report quantitative trends for only 5% of the 59,000 or so terrestrial and freshwater species in the UK, and for very few of the 8,500 marine species. Much needs to be done to improve our knowledge. What we do know about the state of the UK’s nature is often based upon the efforts of thousands of dedicated volunteer enthusiasts who contribute their time and expertise to monitoring schemes and species recording. The threats to the UK’s wildlife are many and varied, the most severe acting either to destroy valuable habitat or degrade the quality and value of what remains. Climate change is having an increasing impact on nature in the UK. Rising average temperatures are known to be driving range expansion in some species, but evidence for harmful impacts is also mounting. The full report is online: www.rspb.org.uk/stateofnature We should act to save nature both for its intrinsic value and for the benefits it brings to us that are essential to our wellbeing and prosperity. Targeted conservation has produced inspiring success stories and, with sufficient determination, resources and public support, we can turn the fortunes of our wildlife around. The State of Nature report serves to illustrate that with shared resolve and commitment we can save nature

    Bionomics and distribution of the stag beetle, Lucanus cervus (L.) across Europe.

    No full text
    1. The European stag beetle, Lucanus cervus, is thought to be widely distributed across its range, but a detailed description of its occurrence is lacking. 2. Researchers in 41 countries were contacted and information sought on various life history characteristics of the insect. Data on adult body size were collected from seven countries. 3. Habitat associations differ between the United Kingdom and mainland Europe. Larvae are most commonly associated with oak, but the duration of the larval stage and the number of instars varies by up to 100% across Europe. 4. Adult size also varies; beetles from Spain, Germany, and the Netherlands are larger than those from Belgium or the UK. In the former countries, populations are composed mainly of large individuals, while in the UK, the majority of individuals are relatively small. Allometric relations between mandible size and total body length differ in Germany compared with the rest of Europe. 5. Distribution maps of the insect, split into records pre- and post-1970, from 24 countries are presented. While these inevitably suffer from recorder bias, they indicate that in only two countries, Croatia and Slovakia, does the insect seem to be increasing in range. 6. Our data suggest that the insect may be in decline across Europe, most likely due to habitat loss, and that conservatio

    The most important broad drivers of species’ population changes, 1970–2012.

    No full text
    <p>Positive (green) and negative (blue) impact for each broad driver of change accounting for two percent or more of the total in absolute terms, ordered by absolute impact. Results are presented using all strengths of evidence available and weighting species in the three major taxonomic groups equally (insects, plants and vertebrates).</p
    corecore