4,787 research outputs found
Gamow-Teller strength distributions for nuclei in pre-supernova stellar cores
Electron-capture and -decay of nuclei in the core of massive stars
play an important role in the stages leading to a type II supernova explosion.
Nuclei in the f-p shell are particularly important for these reactions in the
post Silicon-burning stage of a presupernova star. In this paper, we
characterise the energy distribution of the Gamow-Teller Giant Resonance (GTGR)
for mid-fp-shell nuclei in terms of a few shape parameters, using data obtained
from high energy, forward scattering (p,n) and (n,p) reactions. The energy of
the GTGR centroid is further generalised as function of nuclear
properties like mass number, isospin and other shell model properties of the
nucleus. Since a large fraction of the GT strength lies in the GTGR region, and
the GTGR is accessible for weak transitions taking place at energies relevant
to the cores of presupernova and collapsing stars, our results are relevant to
the study of important -capture and -decay rates of arbitrary,
neutron-rich, f-p shell nuclei in stellar cores. Using the observed GTGR and
Isobaric Analog States (IAS) energy systematics we compare the coupling
coefficients in the Bohr-Mottelson two particle interaction Hamiltonian for
different regions of the Isotope Table.Comment: Revtex, 28 pages +7 figures (PostScript Figures, uuencoded, filename:
Sutfigs.uu). If you have difficulty printing the figures, please contact
[email protected]. Accepted for publication in Phys. Rev. C, Nov 01,
199
Design, Implementation and First Measurements with the Medipix Neutron Camera in CMS
The Medipix detector is the first device dedicated to measuring mixed-field
radiation in the CMS cavern and able to distinguish between different particle
types. Medipix2-MXR chips bump bonded to silicon sensors with various neutron
conversion layers developed by the IEAP CTU in Prague were successfully
installed for the 2008 LHC start-up in the CMS experimental and services
caverns to measure the flux of various particle types, in particular neutrons.
They have operated almost continuously during the 2010 run period, and the
results shown here are from the proton run between the beginning of July and
the end of October 2010. Clear signals are seen and different particle types
have been observed during regular LHC luminosity running, and an agreement in
the measured flux rate is found with the simulations. These initial results are
promising, and indicate that these devices have the potential for further and
future LHC and high energy physics applications as radiation monitoring devices
for mixed field environments, including neutron flux monitoring. Further
extensions are foreseen in the near future to increase the performance of the
detector and its coverage for monitoring in CMS.Comment: 15 pages, 16 figures, submitted to JINS
Isospin dependence of collective flow in heavy-ion collisions at intermediate energies
Within the framework of an isospin-dependent Boltzmann-Uehling-Uhlenbeck
(BUU) model using initial proton and neutron densities calculated from the
nonlinear relativistic mean-field (RMF) theory, we compare the strength of
transverse collective flow in reactions and
, which have the same mass number but different neutron/proton
ratios. The neutron-rich system () is found to show
significantly stronger negative deflection and consequently has a higher
balance energy, especially in peripheral collisions. NOTE ADDED IN PROOF: The
new phenomenon predicted in this work has just been confirmed by an experiment
done by G.D. Westfall et al. using the NSCL/MSU radioactive beam facility and a
spartan soccer. A paper by R. Pak et al. is submitted to PRL to report the
experimental result.Comment: Latex file, 9 pages, 4 figures availabe upon request; Phys. Rev.
Lett. (June 3, 1996) in pres
Neutrons from multiplicity-selected Au-Au collisions at 150, 250, 400, and 650 AMeV
We measured neutron triple-differential cross sections from
multiplicity-selected Au-Au collisions at 150, 250, 400, and 650 \AMeV. The
reaction plane for each collision was estimated from the summed transverse
velocity vector of the charged fragments emitted in the collision. We examined
the azimuthal distribution of the triple-differential cross sections as a
function of the polar angle and the neutron rapidity. We extracted the average
in--plane transverse momentum and the normalized
observable , where is the neutron
transverse momentum, as a function of the neutron center-of-mass rapidity, and
we examined the dependence of these observables on beam energy. These
collective flow observables for neutrons, which are consistent with those of
protons plus bound nucleons from the Plastic Ball Group, agree with the
Boltzmann--Uehling--Uhlenbeck (BUU) calculations with a momentum--dependent
interaction. Also, we calculated the polar-angle-integrated maximum azimuthal
anisotropy ratio R from the value of .Comment: 20 LaTeX pages. 11 figures to be faxed on request, send email to
sender's addres
Neutron-Proton Differential Flow as a Probe of Isospin-Dependence of Nuclear Equation of State
The neutron-proton differential flow is shown to be a very useful probe of
the isospin-dependence of the nuclear equation of state (EOS). This novel
approach utilizes constructively both the isospin fractionation and the nuclear
collective flow as well as their sensitivities to the isospin-dependence of the
nuclear EOS. It also avoids effectively uncertainties associated with other
dynamical ingredients of heavy-ion reactions at intermediate energies.Comment: 10 pages + 3 figures. Phys. Rev. Lett. (2000) in pres
Elliptic flow studies using the CMS detector
The azimuthal anisotropy of charged particles in heavy ion collisions is an important probe of quark-gluon plasma evolution at early stages. The nuclear reaction plane can be determined independently by different detector subsystems and using different analysis methods. This paper reports the capability of the CMS detector at the LHC to reconstruct the reaction plane of the collision and to me asure elliptic flow with calorimetry and a tracking system. The analysis is based on a full CMS detector simulation of \rm{Pb+Pb} events with the HYDJET event generator
Elliptic flow in heavy ion collisions near the balance energy
The proton elliptic flow in collisions of Ca on Ca at energies from 30 to 100
MeV/nucleon is studied in an isospin-dependent transport model. With increasing
incident energy, the elliptic flow shows a transition from positive to negative
flow. Its magnitude depends on both the nuclear equation of state (EOS) and the
nucleon-nucleon scattering cross section. Different elliptic flows are obtained
for a stiff EOS with free nucleon-nucleon cross sections and a soft EOS with
reduced nucleon-nucleon cross sections, although both lead to vanishing
in-plane transverse flow at the same balance energy. The study of both in-plane
and elliptic flows at intermediate energies thus provides a means to extract
simultaneously the information on the nuclear equation of state and the
nucleon-nucleon scattering cross section in medium.Comment: 6 pages, 2 figure
Lambda flow in heavy-ion collisions: the role of final-state interactions
Lambda flow in Ni+Ni collisions at SIS energies is studied in the
relativistic transport model (RVUU 1.0). It is found that for primordial
lambdas the flow is considerably weaker than proton flow. The inclusion of
final-state interactions, especially the propagation of lambdas in mean-field
potential, brings the lambda flow close to that of protons. An accurate
determination of lambda flow in heavy-ion experiments is shown to be very
useful for studying lambda properties in dense matter.Comment: 14 pages, LaTeX, figures available from [email protected], to appear
in Phys. Rev.
Comparison of Source Images for protons, 's and 's in 6 AGeV Au+Au collisions
Source images are extracted from two-particle correlations constructed from
strange and non-strange hadrons produced in 6 AGeV Au + Au collisions. Very
different source images result from pp vs p vs
correlations. These observations suggest important differences in the
space-time emission histories for protons, pions and neutral strange baryons
produced in the same events
Near-threshold production of the multi-strange hyperon
The yield for the multi-strange hyperon has been measured in 6 AGeV
Au+Au collisions via reconstruction of its decay products and
, the latter also being reconstructed from its daughter tracks of
and p. The measurement is rather close to the threshold for
production and therefore provides an important test of model predictions. The
measured yield for and are compared for several
centralities. In central collisions the yield is found to be in
excellent agreement with statistical and transport model predictions,
suggesting that multi-strange hadron production approaches chemical equilibrium
in high baryon density nuclear matter.Comment: Submitted to PR
- âŠ