178 research outputs found

    USDA Beef Carcass Grades: Purpose and Application.

    Get PDF
    4 p

    Tensions and Luscher Terms for (2+1)-dimensional k-strings from Holographic Models

    Full text link
    The leading term for the energy of a bound state of k-quarks and k-antiquarks is proportional to its separation L. These k-string configurations have a Luscher term associated with their quantum fluctuations which is typically a 1/L correction to the energy. We review the status of tensions and Luscher terms in the context of lattice gauge theory, Hamiltonian methods, and gauge/gravity correspondence. Furthermore we explore how different representations of the k-string manifest themselves in the gauge/gravity duality. We calculate the Luscher term for a strongly coupled SU(N) gauge theory in (2+1) dimensions using the gauge/gravity correspondence. Namely, we compute one-loop corrections to a probe D4-brane embedded in the Cvetic, Gibbons, Lu, and Pope supergravity background. We investigate quantum fluctuations of both the bosonic and the fermionic sectors.Comment: 39 pages, reference added, same version to be published in JHE

    Factors influencing time to diagnosis and initiation of treatment of endemic Burkitt Lymphoma among children in Uganda and western Kenya: a cross-sectional survey

    Get PDF
    BACKGROUND: Survival rates for children diagnosed with Burkitt lymphoma (BL) in Africa are far below those achieved in developed countries. Late stage of presentation contributes to poor prognosis, therefore this study investigated factors leading to delays in BL diagnosis and treatment of children in Uganda and western Kenya. METHODS: Guardians of children diagnosed with BL were interviewed at the Jaramogi Oginga Odinga Teaching and Referral Hospital (JTRH) and Uganda Cancer Institute (UCI) from Jan-Dec 2010. Information on sociodemographics, knowledge, attitudes, illness perceptions, health-seeking behaviors and prior health encounters was collected using a standardized, pre-tested questionnaire. RESULTS: Eighty-two guardians were interviewed (20 JTRH, 62 UCI). Median total delay (1st symptoms to BL diagnosis) was 12.1 weeks [interquartile range (IQR) 4.9-19.9] in Kenya and 12.9 weeks (IQR 4.3-25.7) in Uganda. In Kenya, median guardian delay (1st symptoms to 1st health encounter) and health system delay (1st health encounter to BL diagnosis) were 9.0 weeks (IQR 3.6-15.7) and 2.0 weeks (IQR 1.6-5.8), respectively. Data on guardian and health system delay in Uganda were only available for those with \u3c 4 prior health encounters (n = 26). Of these, median guardian delay was 4.3 weeks (range 0.7-149.9), health system delay 2.6 weeks (range 0.1-16.0), and total delay 10.7 weeks (range 1.7-154.3). Guardians in Uganda reported more health encounters than those in Kenya (median 5, range 3-16 vs. median 3, range 2-6). Among Kenyan guardians, source of income was the only independent predictor of delay, whereas in Uganda, guardian delay was influenced by guardians\u27 beliefs on the curability of cancer, health system delay, by guardians\u27 perceptions of cancer as a contagious disease, and total delay, by the number of children in the household and guardians\u27 role as caretaker. Qualitative findings suggest financial costs, transportation, and other household responsibilities were major barriers to care. CONCLUSIONS: Delays from symptom onset to BL treatment were considerable given the rapid growth rate of this cancer, with guardian delay constituting the majority of total delay in both settings. Future interventions should aim to reduce structural barriers to care and increase awareness of BL in particular and cancer in general within the community, as well as among health professionals

    Disposition of Federally Owned Surpluses

    Get PDF
    PDZ domains are scaffolding modules in protein-protein interactions that mediate numerous physiological functions by interacting canonically with the C-terminus or non-canonically with an internal motif of protein ligands. A conserved carboxylate-binding site in the PDZ domain facilitates binding via backbone hydrogen bonds; however, little is known about the role of these hydrogen bonds due to experimental challenges with backbone mutations. Here we address this interaction by generating semisynthetic PDZ domains containing backbone amide-to-ester mutations and evaluating the importance of individual hydrogen bonds for ligand binding. We observe substantial and differential effects upon amide-to-ester mutation in PDZ2 of postsynaptic density protein 95 and other PDZ domains, suggesting that hydrogen bonding at the carboxylate-binding site contributes to both affinity and selectivity. In particular, the hydrogen-bonding pattern is surprisingly different between the non-canonical and canonical interaction. Our data provide a detailed understanding of the role of hydrogen bonds in protein-protein interactions

    Inferring PDZ Domain Multi-Mutant Binding Preferences from Single-Mutant Data

    Get PDF
    Many important cellular protein interactions are mediated by peptide recognition domains. The ability to predict a domain's binding specificity directly from its primary sequence is essential to understanding the complexity of protein-protein interaction networks. One such recognition domain is the PDZ domain, functioning in scaffold proteins that facilitate formation of signaling networks. Predicting the PDZ domain's binding specificity was a part of the DREAM4 Peptide Recognition Domain challenge, the goal of which was to describe, as position weight matrices, the specificity profiles of five multi-mutant ERBB2IP-1 domains. We developed a method that derives multi-mutant binding preferences by generalizing the effects of single point mutations on the wild type domain's binding specificities. Our approach, trained on publicly available ERBB2IP-1 single-mutant phage display data, combined linear regression-based prediction for ligand positions whose specificity is determined by few PDZ positions, and single-mutant position weight matrix averaging for all other ligand columns. The success of our method as the winning entry of the DREAM4 competition, as well as its superior performance over a general PDZ-ligand binding model, demonstrates the advantages of training a model on a well-selected domain-specific data set

    Promiscuous prediction and conservancy analysis of CTL binding epitopes of HCV 3a viral proteome from Punjab Pakistan: an In Silico Approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HCV is a positive sense RNA virus affecting approximately 180 million people world wide and about 10 million Pakistani populations. HCV genotype 3a is the major cause of infection in Pakistani population. One of the major problems of HCV infection especially in the developing countries that limits the limits the antiviral therapy is the long term treatment, high dosage and side effects. Studies of antigenic epitopes of viral sequences of a specific origin can provide an effective way to overcome the mutation rate and to determine the promiscuous binders to be used for epitope based subunit vaccine design. An <it>in silico </it>approach was applied for the analysis of entire HCV proteome of Pakistani origin, aimed to identify the viral epitopes and their conservancy in HCV genotypes 1, 2 and 3 of diverse origin.</p> <p>Results</p> <p>Immunoinformatic tools were applied for the predictive analysis of HCV 3a antigenic epitopes of Pakistani origin. All the predicted epitopes were then subjected for their conservancy analysis in HCV genotypes 1, 2 and 3 of diverse origin (worldwide). Using freely available web servers, 150 MHC II epitopes were predicted as promiscuous binders against 51 subjected alleles. E2 protein represented the 20% of all the predicted MHC II epitopes. 75.33% of the predicted MHC II epitopes were (77-100%) conserve in genotype 3; 47.33% and 40.66% in genotype 1 and 2 respectively. 69 MHC I epitopes were predicted as promiscuous binders against 47 subjected alleles. NS4b represented 26% of all the MHC I predicted epitopes. Significantly higher epitope conservancy was represented by genotype 3 i.e. 78.26% and 21.05% for genotype 1 and 2.</p> <p>Conclusions</p> <p>The study revealed comprehensive catalogue of potential HCV derived CTL epitopes from viral proteome of Pakistan origin. A considerable number of predicted epitopes were found to be conserved in different HCV genotype. However, the number of conserved epitopes in HCV genotype 3 was significantly higher in contrast to its conservancy in HCV genotype 1 and 2. Despite of the lower conservancy in genotype 1 and 2, all the predicted epitopes have important implications in diagnostics as well as CTL-based rational vaccine design, effective for most population of the world and especially the Pakistani Population.</p

    Focal Distribution of Hepatitis C Virus RNA in Infected Livers

    Get PDF
    Background: Hepatitis C virus (HCV) is a plus-strand RNA virus that replicates by amplification of genomic RNA from minus strands leading to accumulation of almost one thousand copies per cell under in vitro cell culture conditions. In contrast, HCV RNA copy numbers in livers of infected patients appear to be much lower, estimated at a few copies per cell. Methodology/Principal Findings: To gain insights into mechanisms that control HCV replication in vivo, we analyzed HCV RNA levels as well as expression of interferon beta (IFNb) and several interferon stimulated genes (ISGs) from whole liver sections and micro-dissected subpopulations of hepatocytes in biopsy samples from 21 HCV-infected patients. The results showed that intrahepatic HCV RNA levels range form less than one copy per hepatocyte to a maximum of about eight. A correlation existed between viral RNA levels and IFNb expression, but not between viral RNA and ISG levels. Also, IFNb expression did not correlate with ISGs levels. Replication of HCV RNA occurred in focal areas in the liver in the presence of a general induction of ISGs. Conclusion/Significance: The low average levels of HCV RNA in biopsy samples can be explained by focal distribution of infected hepatocytes. HCV replication directly induces IFNb, which then activates ISGs. The apparent lack of a correlation between levels of IFNb and ISG expression indicates that control of the innate immune response during HCV infection

    Evolutionarily conserved bias of amino-acid usage refines the definition of PDZ-binding motif

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The interactions between PDZ (PSD-95, Dlg, ZO-1) domains and PDZ-binding motifs play central roles in signal transductions within cells. Proteins with PDZ domains bind to PDZ-binding motifs almost exclusively when the motifs are located at the carboxyl (C-) terminal ends of their binding partners. However, it remains little explored whether PDZ-binding motifs show any preferential location at the C-terminal ends of proteins, at genome-level.</p> <p>Results</p> <p>Here, we examined the distribution of the type-I (x-x-S/T-x-I/L/V) or type-II (x-x-V-x-I/V) PDZ-binding motifs in proteins encoded in the genomes of five different species (human, mouse, zebrafish, fruit fly and nematode). We first established that these PDZ-binding motifs are indeed preferentially present at their C-terminal ends. Moreover, we found specific amino acid (AA) bias for the 'x' positions in the motifs at the C-terminal ends. In general, hydrophilic AAs were favored. Our genomics-based findings confirm and largely extend the results of previous interaction-based studies, allowing us to propose refined consensus sequences for all of the examined PDZ-binding motifs. An ontological analysis revealed that the refined motifs are functionally relevant since a large fraction of the proteins bearing the motif appear to be involved in signal transduction. Furthermore, co-precipitation experiments confirmed two new protein interactions predicted by our genomics-based approach. Finally, we show that influenza virus pathogenicity can be correlated with PDZ-binding motif, with high-virulence viral proteins bearing a refined PDZ-binding motif.</p> <p>Conclusions</p> <p>Our refined definition of PDZ-binding motifs should provide important clues for identifying functional PDZ-binding motifs and proteins involved in signal transduction.</p

    Molecular evolution of the LNX gene family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>LNX (Ligand of Numb Protein-X) proteins typically contain an amino-terminal RING domain adjacent to either two or four PDZ domains - a domain architecture that is unique to the LNX family. LNX proteins function as E3 ubiquitin ligases and their domain organisation suggests that their ubiquitin ligase activity may be targeted to specific substrates or subcellular locations by PDZ domain-mediated interactions. Indeed, numerous interaction partners for LNX proteins have been identified, but the <it>in vivo </it>functions of most family members remain largely unclear.</p> <p>Results</p> <p>To gain insights into their function we examined the phylogenetic origins and evolution of the <it>LNX </it>gene family. We find that a <it>LNX1/LNX2</it>-like gene arose in an early metazoan lineage by gene duplication and fusion events that combined a RING domain with four PDZ domains. These PDZ domains are closely related to the four carboxy-terminal domains from multiple PDZ domain containing protein-1 (MUPP1). Duplication of the <it>LNX1/LNX2</it>-like gene and subsequent loss of PDZ domains appears to have generated a gene encoding a LNX3/LNX4-like protein, with just two PDZ domains. This protein has novel carboxy-terminal sequences that include a potential modular LNX3 homology domain. The two ancestral <it>LNX </it>genes are present in some, but not all, invertebrate lineages. They were, however, maintained in the vertebrate lineage, with further duplication events giving rise to five LNX family members in most mammals. In addition, we identify novel interactions of LNX1 and LNX2 with three known MUPP1 ligands using yeast two-hybrid asssays. This demonstrates conservation of binding specificity between LNX and MUPP1 PDZ domains.</p> <p>Conclusions</p> <p>The <it>LNX </it>gene family has an early metazoan origin with a LNX1/LNX2-like protein likely giving rise to a LNX3/LNX4-like protein through the loss of PDZ domains. The absence of LNX orthologs in some lineages indicates that LNX proteins are not essential in invertebrates. In contrast, the maintenance of both ancestral <it>LNX </it>genes in the vertebrate lineage suggests the acquisition of essential vertebrate specific functions. The revelation that the LNX PDZ domains are phylogenetically related to domains in MUPP1, and have common binding specificities, suggests that LNX and MUPP1 may have similarities in their cellular functions.</p
    • 

    corecore