1,107 research outputs found
Detection of coherent beam-beam modes with digitized beam position monitor signals
A system for bunch-by-bunch detection of transverse proton and antiproton
coherent oscillations in the Fermilab Tevatron collider is described. It is
based on the signal from a single beam-position monitor located in a region of
the ring with large amplitude functions. The signal is digitized over a large
number of turns and Fourier-analyzed offline with a dedicated algorithm. To
enhance the signal, band-limited noise is applied to the beam for about 1 s.
This excitation does not adversely affect the circulating beams even at high
luminosities. The device has a response time of a few seconds, a frequency
resolution of in fractional tune, and it is sensitive to
oscillation amplitudes of 60 nm. It complements Schottky detectors as a
diagnostic tool for tunes, tune spreads, and beam-beam effects. Measurements of
coherent mode spectra are presented and compared with models of beam-beam
oscillations.Comment: 7 pages, 4 figures. Submitted to the Proceedings of the ICFA
Mini-Workshop on Beam-beam Effects in Hadron Colliders (BB2013), Geneva,
Switzerland, 18-22 March 201
Tevatron Beam Halo Collimation System: Design, Operational Experience and New Methods
Collimation of proton and antiproton beams in the Tevatron collider is
required to protect CDF and D0 detectors and minimize their background rates,
to keep irradiation of superconducting magnets under control, to maintain
long-term operational reliability, and to reduce the impact of beam-induced
radiation on the environment. In this article we briefly describe the design,
practical implementation and performance of the collider collimation system,
methods to control transverse and longitudinal beam halo and two novel
collimation techniques tested in the Tevatron.Comment: 25 p
Design and operation of LongBo: a 2 m long drift liquid argon TPC
In this paper, we report on the design and operation of the LongBo time
projection chamber in the Liquid Argon Purity Demonstrator cryostat. This
chamber features a 2 m long drift distance. We measure the electron drift
lifetime in the liquid argon using cosmic ray muons and the lifetime is at
least 14 ms at 95\% confidence level. LongBo is equipped with preamplifiers
mounted on the detector in the liquid argon. Of the 144 channels, 128 channels
were readout by preamplifiers made with discrete circuitry and 16 channels were
readout by ASIC preamplifiers. For the discrete channels, we measure a
signal-to-noise (S/N) ratio of 30 at a drift field of 350 V/cm. The measured
S/N ratio for the ASIC channels was 1.4 times larger than that measured for the
discrete channels.Comment: 19 pages, 17 figure
Precision measurements of the total and partial widths of the psi(2S) charmonium meson with a new complementary-scan technique in antiproton-proton annihilations
We present new precision measurements of the psi(2S) total and partial widths
from excitation curves obtained in antiproton-proton annihilations by Fermilab
experiment E835 at the Antiproton Accumulator in the year 2000. A new technique
of complementary scans was developed to study narrow resonances with
stochastically cooled antiproton beams. The technique relies on precise
revolution-frequency and orbit-length measurements, while making the analysis
of the excitation curve almost independent of machine lattice parameters. We
study the psi(2S) meson through the processes pbar p -> e+ e- and pbar p ->
J/psi + X -> e+ e- + X. We measure the width to be Gamma = 290 +- 25(sta) +-
4(sys) keV and the combination of partial widths Gamma_e+e- * Gamma_pbarp /
Gamma = 579 +- 38(sta) +- 36(sys) meV, which represent the most precise
measurements to date.Comment: 17 pages, 3 figures, 3 tables. Final manuscript accepted for
publication in Phys. Lett. B. Parts of the text slightly expanded or
rearranged; results are unchange
The Liquid Argon Purity Demonstrator
The Liquid Argon Purity Demonstrator was an R&D test stand designed to
determine if electron drift lifetimes adequate for large neutrino detectors
could be achieved without first evacuating the cryostat. We describe here the
cryogenic system, its operations, and the apparatus used to determine the
contaminant levels in the argon and to measure the electron drift lifetime. The
liquid purity obtained by this system was facilitated by a gaseous argon purge.
Additionally, gaseous impurities from the ullage were prevented from entering
the liquid at the gas-liquid interface by condensing the gas and filtering the
resulting liquid before returning to the cryostat. The measured electron drift
lifetime in this test was greater than 6 ms, sustained over several periods of
many weeks. Measurements of the temperature profile in the argon, to assess
convective flow and boiling, were also made and are compared to simulation.Comment: 28 pages, 22 figures, 3 table
Interference Study of the chi_c0 (1^3P_0) in the Reaction Proton-Antiproton -> pi^0 pi^0
Fermilab experiment E835 has observed proton-antiproton annihilation
production of the charmonium state chi_c0 and its subsequent decay into pi^0
pi^0. Although the resonant amplitude is an order of magnitude smaller than
that of the non-resonant continuum production of pi^0 pi^0, an enhanced
interference signal is evident. A partial wave expansion is used to extract
physics parameters. The amplitudes J=0 and 2, of comparable strength, dominate
the expansion. Both are accessed by L=1 in the entrance proton-antiproton
channel. The product of the input and output branching fractions is determined
to be B(pbar p -> chi_c0) x B(chi_c0 -> pi^0 pi^0)= (5.09 +- 0.81 +- 0.25) x
10^-7.Comment: 4 pages, 4 figures, Accepted by PRL (July 2003
Measurement of the Spin-Dependence of the pbar-p Interaction at the AD-Ring
We propose to use an internal polarized hydrogen storage cell gas target in
the AD ring to determine for the first time the two total spin-dependent pbar-p
cross sections sigma_1 and sigma_2 at antiproton beam energies in the range
from 50 to 450 MeV. The data obtained are of interest by themselves for the
general theory of pbar-p interactions since they will provide a first
experimental constraint of the spin-spin dependence of the nucleon-antinucleon
potential in the energy range of interest. In addition, measurements of the
polarization buildup of stored antiprotons are required to define the optimum
parameters of a future, dedicated Antiproton Polarizer Ring (APR), intended to
feed a double-polarized asymmetric pbar-p collider with polarized antiprotons.
Such a machine has recently been proposed by the PAX collaboration for the new
Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt, Germany.
The availability of an intense stored beam of polarized antiprotons will
provide access to a wealth of single- and double-spin observables, thereby
opening a new window on QCD spin physics.Comment: 51 pages, 23 figures, proposal submitted to the SPS committee of CER
- …
