945 research outputs found

    Electron concentration effects on the Shastry-Sutherland phase stability in Ce_{2-x}Pd_{2+y}In_{1-z} solid solutions

    Full text link
    The stability of a Shastry-Sutherland ShSu phase as a function of electron concentration is investigated through the field dependence of thermal and magnetic properties of the solid solution Ce_{2-x}Pd_{2+y}In_{1-z} in the antiferromagnetic branch. In these alloys the electronic (holes) variation is realized by increasing PdPd concentration. The AF transition T_M decreases from 3.5K to 2.8K as PdPd concentration increases from y=0.2 to y=0.4. By applying magnetic field, the ShSu phase is suppressed once the field induced ferromagnetic polarization takes over at a critical field B_{cr} which increases with PdPd content. A detailed analysis around the critical point reveals a structure in the maximum of the dM/dB derivative, which is related with incipient steps in the magnetization M(B) as predicted by the theory for the ShSu lattice. The crossing of M(B) isotherms, observed in ShSu prototype compounds, is also analyzed. The effect of InIn substitution by PdPd is interpreted as an increase of the number of 'holes' in the conduction band and results in a unique parameter able to describe the variation of the magnetic properties along the studied range of concentration.Comment: 8 pages, 11 figure

    Exploring high temperature magnetic order in CeTi_1-xSc_xGe

    Full text link
    Most of magnetic transitions related to Ce ordering are found below T_ord~12K. Among the few cases exceeding that temperature, two types of behaviors can be distinguished. One of them is related to the rare cases of Ce binary compounds formed in BCC structures, with a quartet ground state, whose degeneracy is reduced by undergoing different types of transitions mostly structural. The other group shows evidences of itinerant character with the outstanding example of CeRh_3B_2 showing the highest T_ord=115K. The second highest ordering temperature has been reported for CeScGe with T_ord=47K, but the nature of this magnetic state has not been investigated very deeply. In order to shed more light into this unusual high temperature ordering we studied the structural, magnetic, transport and thermal properties of CeTi_1-xSc_xGe alloys in the stability range of the CeScSi-type structure 0.25<x<1 This system presents a rich variety of magnetic behaviors along this concentration range, with the magnetic ordering growing from ferromagnetic (FM) T_C~7K up to an antiferromagnetic (AFM) transition at T_N=47K. The different regions show the following characteristics: i) on the Ti rich side (0.25<x<0.50) it exhibits a FM ground state (GS) with large saturation magnetization values M_sat up to ~1.15 mu_B. ii) Around x=0.60, the first crystal electric field excited doublet starts to contribute to the GS magnetic properties. Furthermore an AFM component with a connected metamagnetic transition appears. iii) At x=0.65 a clear change in the GS nature is associated to a critical point above which the GS properties can be described like for an itinerant system (with decreasing M_sat) and an effective GS degeneracy N_eff=4. iv) For x>0.65, the magnetic phase boundary splits into two transitions, with an intermediate phase presenting incommensurate spin density waves features.Comment: 8 pages, 10 figure

    Emerging frustration effects in ferromagnetic Ce_2[Pd_{1-x}Ag_x]_2In alloys

    Full text link
    Magnetic and thermal properties of Ferromagnetic (FM) Ce_{2.15}(Pd_{1-x}Ag_x)_{1.95}In_{0.9} alloys were studied in order to determine the Quantum Critical Point (QCP) at T_C => 0. The increase of band electrons produced by Pd/Ag substitution depresses T_C(x) from 4.1K down to T_C(x=0.5)=1.1K, with a QCP extrapolated to x_{QCP}~ 0.6. Magnetic susceptibility from T>30K indicates an effective moment slightly decreasing from \mu_{eff}=2.56\mu_B to 2.4\mu_B at x=0.5. These values and the paramagnetic temperature \theta_P~ -10K exclude significant Kondo screening effects. The T_C(x) reduction is accompanied by a weakening of the FM magnetization and the emergence of a specific heat C_m(T) anomaly at T*~ 1K, without signs of magnetism detected from AC-susceptibility. The magnetic entropy collected around 4K (i.e. the T_C of the x=0 sample) practically does not change with Ag concentration: S_m(4K)~ 0.8 Rln2, suggesting a progressive transfer of FM degrees of freedom to the non-magnetic (NM) component. No antecedent was found concerning any NM anomaly emerging from a FM system at such temperature. The origin of this anomaly is attributed to an 'entropy bottleneck' originated in the nearly divergent power law dependence for T>T*.Comment: 5 pages, 4 figures, Int. Conf. ICM 201

    Non-magnetic Anomaly at 1K Arising in Ferromagnetic Ce2.15(Pd1-xAgx)1.95In0.9

    Get PDF
    Magnetic and thermal properties of Ferromagnetic (FM) Ce2.15(Pd1-xAgx)1.95In0.9 alloys were studied in order to determine the Quantum Critical Point (QCP) at TC \u2192 0. The in- crease of band electrons produced by Pd/Ag substitution depresses TC (x) from 4.1K down to TC (x = 0.5)=1.1K, with a QCP extrapolated to xQCP 65 0.5. Magnetic susceptibility from T &gt; 30K indicates an effective moment slightly decreasing from \u3bceff =2.56\u3bcB to 2.4\u3bcB at x=0.5. These values and the paramagnetic temperature \u3b8P 48 -10K exclude significant Kondo screening effects. The TC (x) reduction is accompanied by a weakening of the FM magnetization and the emergence of a specific heat Cm(T) anomaly at T 17 48 1K, without signs of magnetism detected from AC-susceptibility. The magnetic entropy collected around 4K (i.e. the TC of the x = 0 sample) practically does not change with Ag concentration: Sm(4K) 48 0.8 Rln2, suggesting a progressive transfer of FM degrees of freedom to the non-magnetic (NM) compo- nent. No antecedent was found concerning any NM anomaly emerging from a FM system at such temperature. The origin of this anomaly is attributed to an entropy bottleneck originated in the nearly divergent power law dependence for T &gt; T 17
    corecore