3,925 research outputs found

    Nonlinear sigma model approach for phase disorder transitions and the pseudogap phase in chiral Gross-Neveu, Nambu-Jona-Lasinio models and strong-coupling superconductors

    Get PDF
    We briefly review the nonlinear sigma model approach for the subject of increasing interest: "two-step" phase transitions in the Gross-Neveu and the modified Nambu-Jona-Lasinio models at low NN and condensation from pseudogap phase in strong-coupling superconductors. Recent success in describing "Bose-type" superconductors that possess two characterstic temperatures and a pseudogap above TcT_c is the development approximately comparable with the BCS theory. One can expect that it should have influence on high-energy physics, similar to impact of the BCS theory on this subject. Although first generalizations of this concept to particle physics were made recently, these results were not systematized. In this review we summarize this development and discuss similarities and differences of the appearence of the pseudogap phase in superconductors and the Gross-Neveu and Nambu-Jona-Lasinio - like models. We discuss its possible relevance for chiral phase transition in QCD and color superconductors. This paper is organized in three parts: in the first section we briefly review the separation of temperatures of pair formation and pair condensation in strong - coupling and low carrier density superconductors (i.e. the formation of the {\it pseudogap phase}). Second part is a review of nonlinear sigma model approach to an analogous phenomenon in the Chiral Gross-Neveu model at small N. In the third section we discuss the modified Nambu-Jona-Lasinio model where the chiral phase transition is accompanied by a formation of a phase analogous to the pseudogap phase.Comment: A brief review. Replaced with journal version (some grammatical corrections). The latest updates of this and related papers are also available at the author home page http://www.teorfys.uu.se/PEOPLE/egor

    Dual neutral variables and knot solitons in triplet superconductors

    Full text link
    In this paper we derive a dual presentation of free energy functional for spin-triplet superconductors in terms of gauge-invariant variables. The resulting equivalent model in ferromagnetic phase has a form of a version of the Faddeev model. This allows one in particular to conclude that spin-triplet superconductors allow formation of stable finite-length closed vortices (the knotted solitons).Comment: Replaced with version published in PRL (added a discussion of the effect of the coupling of the fields {\vec s} and {\vec C} on knot stability). Latest updates of the paper and miscellaneous links related to knotted solitons are also available at the homepage of the author http://www.teorfys.uu.se/PEOPLE/egor/ . Animations of knotted solitons by Hietarinta and Salo are available at http://users.utu.fi/h/hietarin/knots/c45_p2.mp

    Thermodynamics of Crossover from Weak- to Strong-Coupling Superconductivity

    Full text link
    In this paper we study an evolution of low-temperature thermodynamical quantities for an electron gas with a δ \delta -function attraction as the system crosses over from weak-coupling (BCS-type) to strong-coupling (Bose-type) superconductivity in three and two dimensions.Comment: Replaced with journal version. Insignificant presentation changes. Links to related papers are also available at the author home page http://www.teorfys.uu.se/PEOPLE/egor

    Characteristic length scales and formation of vortices in the Abelian Higgs model in the presence of a uniform background charge

    Full text link
    In this brief report we consider a non-local Abelian Higgs model in the presence of a neutralizing uniform background charge. We show that such a system possesses vortices which key feature is a strong radial electric field. We estimate the basic properties of such an object and characteristic length scales in this model.Comment: Replaced with journal version. Some minor change

    Non-London electrodynamics in a multiband London model: Anisotropy-induced nonlocalities and multiple magnetic field penetration lengths

    Get PDF
    The London model describes strongly type-2 superconductors as massive vector field theories, where the magnetic field decays exponentially at the length scale of the London penetration length. This also holds for isotropic multiband extensions, where the presence of multiple bands merely renormalizes the London penetration length. We show that, by contrast, the magnetic properties of anisotropic multiband London models are not this simple, and the anisotropy leads to the interband phase differences becoming coupled to the magnetic field. This results in the magnetic field in such systems having N+1 penetration lengths, where N is the number of field components or bands. That is, in a given direction, the magnetic field decay is described by N+1 modes with different amplitudes and different decay length scales. For certain anisotropies we obtain magnetic modes with complex masses. That means that magnetic field decay is not described by a monotonic exponential increment set by a real penetration length but instead is oscillating. Some of the penetration lengths are shown to diverge away from the superconducting phase transition when the mass of the phase-difference mode vanishes. Finally the anisotropy-driven hybridization of the London mode with the Leggett modes can provide an effectively nonlocal magnetic response in the nominally local London model. Focusing on the two-component model, we discuss the magnetic field inversion that results from the effective nonlocality, both near the surface of the superconductor and around vortices. In the regime where the magnetic field decay becomes nonmonotonic, the multiband London superconductor is shown to form weakly-bound states of vortices

    Thermoelectric power of nondegenerate Kane semiconductors under the conditions of mutual electron-phonon drag in a high electric field

    Full text link
    The thermoelectric power of nondegenerate Kane semiconductors with due regard for the electron and phonon heating, and their thermal and mutual drags is investigated. The electron spectrum is taken in the Kane two-band form. It is shown that the nonparabolicity of electron spectrum significantly influences the magnitude of the thermoelectric power and leads to a change of its sign and dependence on the heating electric field. The field dependence of the thermoelectric power is determined analytically under various drag conditions.Comment: 25 pages, RevTex formatted, 3 table

    Charmonia above the Deconfinement Phase Transition

    Full text link
    Analyzing correlation functions of charmonia at finite temperature (TT) on 323×(3296)32^3\times(32-96) anisotropic lattices by the maximum entropy method (MEM), we find that J/ψJ/\psi and ηc\eta_c survive as distinct resonances in the plasma even up to T1.6TcT \simeq 1.6 T_c and that they eventually dissociate between 1.6Tc1.6 T_c and 1.9Tc1.9 T_c (TcT_c is the critical temperature of deconfinement). This suggests that the deconfined plasma is non-perturbative enough to hold heavy-quark bound states. The importance of having sufficient number of temporal data points in the MEM analysis is also emphasized.Comment: Lattice2003(nonzero), 3 pages, 3 figure

    Baryonic Bound State of Vortices in Multicomponent Superconductors

    Full text link
    We construct a bound state of three 1/3-quantized Josephson coupled vortices in three-component superconductors with intrinsic Josephson couplings, which may be relevant with regard to iron-based superconductors. We find a Y-shaped junction of three domain walls connecting the three vortices, resembling the baryonic bound state of three quarks in QCD. The appearance of the Y-junction (but not a Delta-junction) implies that in both cases of superconductors and QCD, the bound state is described by a genuine three-body interaction (but not by the sum of two-body interactions). We also discuss a confinement/deconfinement phase transition.Comment: 11 pages, 3 figures, one section on confinement/deconfinement transition added, published versio
    corecore