22,411 research outputs found
A new model for evolution in a spatial continuum
We investigate a new model for populations evolving in a spatial continuum.
This model can be thought of as a spatial version of the Lambda-Fleming-Viot
process. It explicitly incorporates both small scale reproduction events and
large scale extinction-recolonisation events. The lineages ancestral to a
sample from a population evolving according to this model can be described in
terms of a spatial version of the Lambda-coalescent. Using a technique of
Evans(1997), we prove existence and uniqueness in law for the model. We then
investigate the asymptotic behaviour of the genealogy of a finite number of
individuals sampled uniformly at random (or more generally `far enough apart')
from a two-dimensional torus of side L as L tends to infinity. Under
appropriate conditions (and on a suitable timescale), we can obtain as limiting
genealogical processes a Kingman coalescent, a more general Lambda-coalescent
or a system of coalescing Brownian motions (with a non-local coalescence
mechanism).Comment: 63 pages, version accepted to Electron. J. Proba
Local and Global Casimir Energies for a Semitransparent Cylindrical Shell
The local Casimir energy density and the global Casimir energy for a massless
scalar field associated with a -function potential in a 3+1
dimensional circular cylindrical geometry are considered. The global energy is
examined for both weak and strong coupling, the latter being the well-studied
Dirichlet cylinder case. For weak-coupling,through ,
the total energy is shown to vanish by both analytic and numerical arguments,
based both on Green's-function and zeta-function techniques. Divergences
occurring in the calculation are shown to be absorbable by renormalization of
physical parameters of the model. The global energy may be obtained by
integrating the local energy density only when the latter is supplemented by an
energy term residing precisely on the surface of the cylinder. The latter is
identified as the integrated local energy density of the cylindrical shell when
the latter is physically expanded to have finite thickness. Inside and outside
the delta-function shell, the local energy density diverges as the surface of
the shell is approached; the divergence is weakest when the conformal stress
tensor is used to define the energy density. A real global divergence first
occurs in , as anticipated, but the proof is supplied
here for the first time; this divergence is entirely associated with the
surface energy, and does {\em not} reflect divergences in the local energy
density as the surface is approached.Comment: 28 pages, REVTeX, no figures. Appendix added on perturbative
divergence
Coalescent simulation in continuous space:Algorithms for large neighbourhood size
Many species have an essentially continuous distribution in space, in which there are no natural divisions between randomly mating subpopulations. Yet, the standard approach to modelling these populations is to impose an arbitrary grid of demes, adjusting deme sizes and migration rates in an attempt to capture the important features of the population. Such indirect methods are required because of the failure of the classical models of isolation by distance, which have been shown to have major technical flaws. A recently introduced model of extinction and recolonisation in two dimensions solves these technical problems, and provides a rigorous technical foundation for the study of populations evolving in a spatial continuum. The coalescent process for this model is simply stated, but direct simulation is very inefficient for large neighbourhood sizes. We present efficient and exact algorithms to simulate this coalescent process for arbitrary sample sizes and numbers of loci, and analyse these algorithms in detail
Nucleon-Nucleon Interactions from Dispersion Relations: Coupled Partial Waves
We consider nucleon-nucleon interactions from chiral effective field theory
applying the N/D method. The case of coupled partial waves is now treated,
extending Ref. [1] where the uncoupled case was studied. As a result three N/D
elastic-like equations have to be solved for every set of three independent
partial waves coupled. As in the previous reference the input for this method
is the discontinuity along the left-hand cut of the nucleon-nucleon partial
wave amplitudes. It can be calculated perturbatively in chiral perturbation
theory because it involves only irreducible two-nucleon intermediate states. We
apply here our method to the leading order result consisting of one-pion
exchange as the source for the discontinuity along the left-hand cut. The
linear integral equations for the N/D method must be solved in the presence of
L - 1 constraints, with L the orbital angular momentum, in order to satisfy the
proper threshold behavior for L>= 2. We dedicate special attention to satisfy
the requirements of unitarity in coupled channels. We also focus on the
specific issue of the deuteron pole position in the 3S1-3D1 scattering. Our
final amplitudes are based on dispersion relations and chiral effective field
theory, being independent of any explicit regulator. They are amenable to a
systematic improvement order by order in the chiral expansion.Comment: 11 pages. Extends the work of uncoupled partial waves of M.
Albaladejo and J. A. Oller, Phys. Rev. C 84, 054009 (2011) to the case of
coupled partial waves. This version matches the published version. Discussion
about the deuteron enlarged. Some references adde
Recognition of abasic sites and single base bulges in DNA by a metalloinsertor
Abasic sites and single base bulges are thermodynamically destabilizing DNA defects that can lead to cancerous transformations if left unrepaired by the cell. Here we discuss the binding properties with abasic sites and single base bulges of Rh(bpy)_2(chrysi)^(3+), a complex previously shown to bind thermodynamically destabilized mismatch sites via metalloinsertion. Photocleavage experiments show that Rh(bpy)_2(chrysi)^(3+) selectively binds abasic sites with affinities of 1−4 × 10^6 M^(−1); specific binding is independent of unpaired base identity but is somewhat contingent on sequence context. Single base bulges are also selectively bound and cleaved, but in this case, the association constants are significantly lower (~10^5 M^(−1)), and the binding is dependent on both unpaired base identity and bulge sequence context. A wide variety of evidence, including strand scission asymmetry, binding enantiospecificity, and MALDI-TOF cleavage fragment analysis, suggests that Rh(bpy)_2(chrysi)^(3+) binds abasic sites, like mismatches, through insertion of the bulky chrysi ligand into the base pair stack from the minor groove side and ejection of the unpaired base. At single base bulge sites, a similar, though not identical, metalloinsertion mode is suggested. The recognition of abasic sites and single base bulges with bulky metalloinsertors holds promise for diagnostic and therapeutic applications
Saddle Points and Stark Ladders: Exact Calculations of Exciton Spectra in Superlattices
A new, exact method for calculating excitonic absorption in superlattices is
described. It is used to obtain high resolution spectra showing the saddle
point exciton feature near the top of the miniband. The evolution of this
feature is followed through a series of structures with increasing miniband
width. The Stark ladder of peaks produced by an axial electric field is
investigated, and it is shown that for weak fields the line shapes are strongly
modified by coupling to continuum states, taking the form of Fano resonances.
The calculated spectra, when suitably broadened, are found to be in good
agreement with experimental results.Comment: 9 pages Revtex v3.0, followed by 4 uuencoded postscript figures,
SISSA-CM-94-00
A method for volume stabilization of single, dye-doped water microdroplets with femtoliter resolution
A self-control mechanism that stabilizes the size of Rhodamine B-doped water
microdroplets standing on a superhydrophobic surface is demonstrated. The
mechanism relies on the interplay between the condensation rate that was kept
constant and evaporation rate induced by laser excitation which critically
depends on the size of the microdroplets. The radii of individual water
microdroplets (>5 um) stayed within a few nanometers during long time periods
(up to 455 seconds). By blocking the laser excitation for 500 msec, the stable
volume of individual microdroplets was shown to change stepwise.Comment: to appear in the J. Op. Soc. Am.
Search for correlation effects in linear chains of trapped ions
We report a precise search for correlation effects in linear chains of 2 and
3 trapped Ca+ ions. Unexplained correlations in photon emission times within a
linear chain of trapped ions have been reported, which, if genuine, cast doubt
on the potential of an ion trap to realize quantum information processing. We
observe quantum jumps from the metastable 3d 2D_{5/2} level for several hours,
searching for correlations between the decay times of the different ions. We
find no evidence for correlations: the number of quantum jumps with separations
of less than 10 ms is consistent with statistics to within errors of 0.05%; the
lifetime of the metastable level derived from the data is consistent with that
derived from independent single-ion data at the level of the experimental
errors 1%; and no rank correlations between the decay times were found with
sensitivity to rank correlation coefficients at the level of |R| = 0.024.Comment: With changes to introduction. 5 pages, including 4 figures. Submitted
to Europhys. Let
Relic Abundances and the Boltzmann Equation
I discuss the validity of the quantum Boltzmann equation for the calculation
of WIMP relic densities.Comment: 5 pages, no figures; talk given at Dark Matter 2000; an important
reference is added in the revised versio
- …