17,600 research outputs found
Subminiature micropower digital recorder
High-density digital data, collected periodically or randomly from multiplicity of sensors, are recorded by subminiature recorder. Magnetic recording head is energized with suitable pulsatile signals to reverse polarization on magnetically-sensitive tape while tape is immobilized at recording head. Prior to next recording, set tape so new area of tape is at recording head
Correlations and fluctuations of a confined electron gas
The grand potential and the response of a phase-coherent confined noninteracting electron gas depend
sensitively on chemical potential or external parameter . We compute
their autocorrelation as a function of , and temperature. The result
is related to the short-time dynamics of the corresponding classical system,
implying in general the absence of a universal regime. Chaotic, diffusive and
integrable motions are investigated, and illustrated numerically. The
autocorrelation of the persistent current of a disordered mesoscopic ring is
also computed.Comment: 12 pages, 1 figure, to appear in Phys. Rev.
Photoproduction Processes in Polarized ep - Collisions at HERA
We study various conceivable photoproduction reactions in a polarized ep
collider mode of HERA with respect to their sensitivity to the proton's
polarized gluon distribution. A special emphasis is put on the `resolved' part
of the cross sections which in principle opens the possibility to determine for
the first time also the completely unknown parton content of longitudinally
polarized photons. In the very promising case of dijet production we also
investigate the impact of parton showering, hadronization and jet finding on
the parton level results.Comment: 16 pages, LaTeX, 7 figures, uses epsfig, amssymb, and a41 (included)
styles; Contribution to the proceedings of the 1997 workshop on 'Physics with
Polarized Protons at HERA', Hamburg and Zeuthen, Germany, March-September
199
Construction of localized wave functions for a disordered optical lattice and analysis of the resulting Hubbard model parameters
We propose a method to construct localized single particle wave functions
using imaginary time projection and thereby determine lattice Hamiltonian
parameters. We apply the method to a specific disordered potential generated by
an optical lattice experiment and calculate for each instance of disorder, the
equivalent lattice model parameters. The probability distributions of the
Hubbard parameters are then determined. Tests of localization and eigen-energy
convergence are examined.Comment: 10 pages, 16 figure
Experimental assessment of presumed filtered density function models
Measured filtered density functions (FDFs) as well as assumed beta distribution model of mixture fraction and “subgrid” scale (SGS) scalar variance, used typically in large eddy simulations, were studied by analysing experimental data, obtained from two-dimensional planar, laser induced fluorescence measurements in isothermal swirling turbulent flows at a constant Reynolds number of 29 000 for different swirl numbers (0.3, 0.58, and 1.07)
Comparison of imaging with sub-wavelength resolution in the canalization and resonant tunnelling regimes
We compare the properties of subwavelength imaging in the visible wavelength
range for metal-dielectric multilayers operating in the canalization and the
resonant tunnelling regimes. The analysis is based on the transfer matrix
method and time domain simulations. We show that Point Spread Functions for the
first two resonances in the canalization regime are approximately Gaussian in
shape. Material losses suppress transmission for higher resonances, regularise
the PSF but do not compromise the resolution. In the resonant tunnelling
regime, the MTF may dramatically vary in their phase dependence. Resulting PSF
may have a sub-wavelength thickness as well as may be broad with multiple
maxima and a rapid phase modulation. We show that the width of PSF may be
reduced by further propagation in free space, and we provide arguments to
explain this surprising observation.Comment: 17 pages,12 figure
Model-independent measurements of the sodium magneto-optical trap's excited-state population
We present model-independent measurements of the excited-state population of
atoms in a sodium (Na) magneto-optical trap (MOT) using a hybrid ion-neutral
trap composed of a MOT and a linear Paul trap (LPT). We photoionize excited Na
atoms trapped in the MOT and use two independent methods to measure the
resulting ions: directly by trapping them in our LPT, and indirectly by
monitoring changes in MOT fluorescence. By measuring the ionization rate via
these two independent methods, we have enough information to directly determine
the population of MOT atoms in the excited-state. The resulting measurement
reveals that there is a range of trapping-laser intensities where the
excited-state population of atoms in our MOT follows the standard two-level
model intensity-dependence. However, an experimentally determined effective
saturation intensity must be used instead of the theoretically predicted value
from the two-level model. We measured the effective saturation intensity to be
for the type-I Na MOT and
for the type-II Na MOT,
approximately 1.7 and 3.6 times the theoretical estimate, respectively. Lastly,
at large trapping-laser intensities, our experiment reveals a clear departure
from the two-level model at a critical intensity that we believe is due to a
state-mixing effect, whose critical intensity can be determined by a simple
power broadening model.Comment: 10 pages, 8 figure
- …