12,725 research outputs found
Stability, Adsorption and Diffusion of CH4, CO2 and H2 in Clathrate Hydrates
We present a study of the adsorption and diffusion of CH4, CO2 and H2
molecules in clathrate hydrates using ab initio van der Waals density
functional formalism [Dion et al. Phys. Rev. Lett. 92, 246401 (2004)]. We find
that the adsorption energy is dominated by van der Waals interactions and that,
without them, gas hydrates would not be stable. We calculate the maximum
adsorption capacity as well as the maximum hydrocarbon size that can be
adsorbed.The relaxation of the host lattice is essential for a good description
of the diffusion activation energies, which are estimated to be of the order of
0.2, 0.4, and 1.0 eV for H2, CO2, and CH4, respectively.Comment: 4 pages, 4 figures, 3 table
Phantom energy from graded algebras
We construct a model of phantom energy using the graded Lie algebra SU(2/1).
The negative kinetic energy of the phantom field emerges naturally from the
graded Lie algebra, resulting in an equation of state with w<-1. The model also
contains ordinary scalar fields and anti-commuting (Grassmann) vector fields
which can be taken as two component dark matter. A potential term is generated
for both the phantom fields and the ordinary scalar fields via a postulated
condensate of the Grassmann vector fields. Since the phantom energy and dark
matter arise from the same Lagrangian the phantom energy and dark matter of
this model are coupled via the Grassman vector fields. In the model presented
here phantom energy and dark matter come from a gauge principle rather than
being introduced in an ad hoc manner.Comment: 8 pages no figures; references added and discussion on condensate of
vector grassman fields added. To be published MPL
Geodesics in Heat
We introduce the heat method for computing the shortest geodesic distance to
a specified subset (e.g., point or curve) of a given domain. The heat method is
robust, efficient, and simple to implement since it is based on solving a pair
of standard linear elliptic problems. The method represents a significant
breakthrough in the practical computation of distance on a wide variety of
geometric domains, since the resulting linear systems can be prefactored once
and subsequently solved in near-linear time. In practice, distance can be
updated via the heat method an order of magnitude faster than with
state-of-the-art methods while maintaining a comparable level of accuracy. We
provide numerical evidence that the method converges to the exact geodesic
distance in the limit of refinement; we also explore smoothed approximations of
distance suitable for applications where more regularity is required
Dynamical structure of entangled polymers simulated under shear flow
The non-linear response of entangled polymers to shear flow is complicated.
Its current understanding is framed mainly as a rheological description in
terms of the complex viscosity. However, the full picture requires an
assessment of the dynamical structure of individual polymer chains which give
rise to the macroscopic observables. Here we shed new light on this problem,
using a computer simulation based on a blob model, extended to describe shear
flow in polymer melts and semi-dilute solutions. We examine the diffusion and
the intermediate scattering spectra during a steady shear flow. The relaxation
dynamics are found to speed up along the flow direction, but slow down along
the shear gradient direction. The third axis, vorticity, shows a slowdown at
the short scale of a tube, but reaches a net speedup at the large scale of the
chain radius of gyration
Testing Two-Field Inflation
We derive semi-analytic formulae for the power spectra of two-field inflation
assuming an arbitrary potential and non-canonical kinetic terms, and we use
them both to build phenomenological intuition and to constrain classes of
two-field models using WMAP data. Using covariant formalism, we first develop a
framework for understanding the background field kinematics and introduce a
"slow-turn" approximation. Next, we find covariant expressions for the
evolution of the adiabatic/curvature and entropy/isocurvature modes, and we
discuss how the mode evolution can be inferred directly from the background
kinematics and the geometry of the field manifold. From these expressions, we
derive semi-analytic formulae for the curvature, isocurvature, and cross
spectra, and the spectral observables, all to second-order in the slow-roll and
slow-turn approximations. In tandem, we show how our covariant formalism
provides useful intuition into how the characteristics of the inflationary
Lagrangian translate into distinct features in the power spectra. In
particular, we find that key features of the power spectra can be directly read
off of the nature of the roll path, the curve the field vector rolls along with
respect to the field manifold. For example, models whose roll path makes a
sharp turn 60 e-folds before inflation ends tend to be ruled out because they
produce strong departures from scale invariance. Finally, we apply our
formalism to confront four classes of two-field models with WMAP data,
including doubly quadratic and quartic potentials and non-standard kinetic
terms, showing how whether a model is ruled out depends not only on certain
features of the inflationary Lagrangian, but also on the initial conditions.
Ultimately, models must possess the right balance of kinematical and dynamical
behaviors, which we capture in a set of functions that can be reconstructed
from spectral observables.Comment: Revised to match accepted PRD version: Improved discussion of
background kinematics and multi-field effects, added tables summarizing key
quantities and their links to observables, more detailed figures, fixed typos
in former equations (103) and (117). 49 PRD pages, 11 figure
Anomalous Axion Interactions and Topological Currents in Dense Matter
Recently an effective Lagrangian for the interactions of photons,
Nambu-Goldstone bosons and superfluid phonons in dense quark matter has been
derived using anomaly matching arguments. In this paper we illuminate the
nature of certain anomalous terms in this Lagrangian by an explicit microscopic
calculation. We also generalize the corresponding construction to introduce the
axion field. We derive an anomalous axion effective Lagrangian describing the
interactions of axions with photons and superfluid phonons in the dense matter
background. This effective Lagrangian, among other things, implies that an
axion current will be induced in the presence of magnetic field. We speculate
that this current may be responsible for the explanation of neutron star kicks.Comment: 10 page
Lax pair tensors in arbitrary dimensions
A recipe is presented for obtaining Lax tensors for any n-dimensional
Hamiltonian system admitting a Lax representation of dimension n. Our approach
is to use the Jacobi geometry and coupling-constant metamorphosis to obtain a
geometric Lax formulation. We also exploit the results to construct integrable
spacetimes, satisfying the weak energy condition.Comment: 8 pages, uses IOP style files. Minor correction. Submitted to J. Phys
Information scraps: how and why information eludes our personal information management tools
In this paper we describe information scraps -- a class of personal information whose content is scribbled on Post-it notes, scrawled on corners of random sheets of paper, buried inside the bodies of e-mail messages sent to ourselves, or typed haphazardly into text files. Information scraps hold our great ideas, sketches, notes, reminders, driving directions, and even our poetry. We define information scraps to be the body of personal information that is held outside of its natural or We have much still to learn about these loose forms of information capture. Why are they so often held outside of our traditional PIM locations and instead on Post-its or in text files? Why must we sometimes go around our traditional PIM applications to hold on to our scraps, such as by e-mailing ourselves? What are information scraps' role in the larger space of personal information management, and what do they uniquely offer that we find so appealing? If these unorganized bits truly indicate the failure of our PIM tools, how might we begin to build better tools? We have pursued these questions by undertaking a study of 27 knowledge workers. In our findings we describe information scraps from several angles: their content, their location, and the factors that lead to their use, which we identify as ease of capture, flexibility of content and organization, and avilability at the time of need. We also consider the personal emotive responses around scrap management. We present a set of design considerations that we have derived from the analysis of our study results. We present our work on an application platform, jourknow, to test some of these design and usability findings
Questionable and unquestionable in the perturbation theory of non-Abelian models
We show, by explicit computation, that bare lattice perturbation theory in
the two-dimensional O(n) nonlinear models with superinstanton boundary
conditions is divergent in the limit of an infinite number of points
. This is the analogue of David's statement that renormalized
perturbation theory of these models is infrared divergent in the limit where
the physical size of the box tends to infinity. We also give arguments which
support the validity of the bare perturbative expansion of short-distance
quantities obtained by taking the limit term by term in
the theory with more conventional boundary conditions such as Dirichlet,
periodic, and free.Comment: One reference added to the published version, 28 pages, 3 figure
The First Galaxies: Clues from Element Abundances
It has recently become possible to measure directly the abundances of several
chemical elements in a variety of environments at redshifts up to z = 5. In
this review I summarise the latest observations of Lyman break galaxies, damped
Lyman alpha systems and the Lyman alpha forest with a view to uncovering any
clues which these data may offer to the first episodes of star formation. The
picture which is emerging is one where the universe at z = 3 already included
many of the components of today's galaxies--even at these early times we see
evidence for Populations I and II stars, while the `smoking gun' for Population
III objects may be hidden in the chemical composition of the lowest density
regions of the IGM, yet to be deciphered.Comment: 15 pages, LaTex, 8 Postscript Figures. To appear in the Philosophical
Transactions of The Royal Society, Series
- …
