887 research outputs found

    Performance analysis and optimization of the JOREK code for many-core CPUs

    Get PDF
    This report investigates the performance of the JOREK code on the Intel Knights Landing and Skylake processor architectures. The OpenMP scaling of the matrix construction part of the code was analyzed and improved synchronization methods were implemented. A new switch was implemented to control the number of threads used for the linear equation solver independently from other parts of the code. The matrix construction subroutine was vectorized, and the data locality was also improved. These steps led to a factor of two speedup for the matrix construction

    A generalised formulation of G-continuous Bezier elements applied to non-linear MHD simulations

    Get PDF
    The international tokamak ITER is progressing towards assembly completion and first-plasma operation, which will be a physics and engineering challenge for the fusion community. In the preparation for ITER experimental scenarios, non-linear MHD simulations are playing an essential role to actively understand and predict the behaviour and stability of tokamak plasmas in future fusion power plant. The development of MHD codes like JOREK is a key aspect of this research effort, and provides invaluable insight into the plasma stability and the control of global and localised plasma events, like Edge-Localised-Mode and disruptions. In this paper, we present an operational implementation of a new, generalised formulation of Bezier finite-elements applied to the JOREK code, a significant advancement from the previously G1-continuous bi-cubic Bezier elements. This new mathematical method enables any polynomial order of Bezier elements, with a guarantee of G-continuity at the level of (n−1)/2, for any odd n, where n is the order of the Bezier polynomials. The generalised method is defined, and a rigorous mathematical proof is provided for the G-continuity requirement. Key details on the code implementation are mentioned, together with a suite of tests to demonstrate the mathematical reliability of the finite-element method, as well as the practical usability for typical non-linear tokamak MHD simulations. A demonstration for a state-of-the-art simulation of an Edge-Localised-Mode instability in the future ITER tokamak, with realistic grid geometry, finalises the study.</p

    How perceived scarcity predicted cooperation during early pandemic lockdown.

    Get PDF
    Both material resources (jobs, healthcare), and socio-psychological resources (social contact) decreased during the COVID-19 pandemic. We investigated whether individual differences in perceived material and socio-psychological scarcity experienced during the pandemic predicted preference for cooperation, measured using two Public Good Games (PGGs), where participants contributed money or time (i.e., hours indoors contributed to shorten the lockdown). Material scarcity had no relationship with cooperation. Increased perceived scarcity of socio-psychological wellbeing (e.g., connecting with family) predicted increased preference for cooperation, suggesting that missing social contact fosters prosociality, whilst perceived scarcity of freedom (e.g., limited movement) predicted decreased willingness to spend time indoors to shorten the lockdown. The importance of considering individual differences in scarcity perception to best promote norm compliance is discussed

    Transition from no-ELM response to pellet ELM triggering during pedestal build-up—insights from extended MHD simulations

    Get PDF
    Pellet edge localized mode (ELM) triggering is a well-established scheme for decreasing the time between two successive ELM crashes below its natural value. Reliable ELM pacing has been demonstrated experimentally in several devices, increasing the ELM frequency considerably. However, it was also shown that the frequency cannot be increased arbitrarily due to a so-called lag-time. During this time, after a preceding natural or triggered ELM crash, neither a natural ELM crash occurs nor is it possible to trigger an ELM crash by pellet injection. For this article, pellet ELM triggering simulations are advanced beyond previous studies in two ways. Firstly, realistic E B and diamagnetic background flows are included. And secondly, the pellet is injected at different stages of the pedestal build-up. This allows us to recover the lag time for the first time in simulations and investigate it in detail. A series of nonlinear extended MHD simulations is performed to investigate the plasma dynamics resulting from an injection at different time points during the pedestal build-up. The experimentally observed lag-time is qualitatively reproduced. In particular, a sharp transition is observed between the regime where no ELMs can be triggered and the regime where pellet injection causes an ELM crash. Via variations of pellet parameters and injection time, the two regimes are studied and compared in detail, revealing pronounced differences in the nonlinear dynamics. The toroidal mode spectrum is significantly broader when an ELM crash is triggered, enhancing the stochasticity and therefore also the losses of thermal energy along magnetic field lines. In the heat fluxes to the divertor targets, pronounced toroidal asymmetries are observed. In the case of high injection velocities leading to deep penetration, the excitation of core modes like the 2/1 neoclassical tearing mode is also observed

    Development and application of a hybrid MHD-kinetic model in JOREK

    Get PDF
    Energetic particle (EP) driven instabilities will be of strongly increased relevance in future burning plasmas as the EP pressure will be very large compared to the thermal plasma. Understanding the interaction of EPs and bulk plasma is crucial for developing next-generation fusion devices. In this work, the JOREK MHD code is extended to allow for the simulation of EP instabilities at high EP pressures using realistic plasma and EP parameter in a full-f formulation with anisotropic pressure coupling to the bluid background. The code is first benchmarked linearly for the ITPA-TAE as well as the experiment based AUG-NLED cases, obtaining good agreement to other codes. Then, it is applied to a high energetic particle pressure discharge in the ASDEX Upgrade tokamak using a realistic non-Maxwellian distribution of EPs, reproducing aspects of the experimentally observed instabilities. Non-linear applications are possible based on the implentation, but will require dedicated verification and validation left for future work

    Farming, Gender and Aspirations across Young People's Life Course

    Get PDF
    Drawing on life history interviews conducted in Indian and Indonesian study sites, we tease out the social production of aspirations in the process of becoming a farmer. We show the power of a doxic logic in which schooling is regarded as the pathway out of farming, towards a future of non-manual, salaried employment. Among rural youth this doxic logic produces broadly defined aspiration such as ‘completing education’, and ‘getting a job’. In the absence of clear pathways to realise such aspirations, young people seek to keep options open. Yet, the scope for doing so changes in relation to key life events such as ending school, migration and marriage and does so in distinctly gendered ways. We conclude proposing that young people’s delayed entrance into farming, among other things, must be understood as an attempt to keep open those futures that are considered closed by an early entry into full-time farming
    • …
    corecore