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The international tokamak ITER is progressing towards assembly completion and first-
plasma operation, which will be a physics and engineering challenge for the fusion 
community. In the preparation for ITER experimental scenarios, non-linear MHD simulations 
are playing an essential role to actively understand and predict the behaviour and stability 
of tokamak plasmas in future fusion power plant. The development of MHD codes like 
JOREK is a key aspect of this research effort, and provides invaluable insight into the 
plasma stability and the control of global and localised plasma events, like Edge-Localised-
Mode and disruptions. In this paper, we present an operational implementation of a new, 
generalised formulation of Bezier finite-elements applied to the JOREK code, a significant 
advancement from the previously G1-continuous bi-cubic Bezier elements. This new 
mathematical method enables any polynomial order of Bezier elements, with a guarantee 
of G-continuity at the level of (n − 1)/2, for any odd n, where n is the order of the Bezier 
polynomials. The generalised method is defined, and a rigorous mathematical proof is 
provided for the G-continuity requirement. Key details on the code implementation are 
mentioned, together with a suite of tests to demonstrate the mathematical reliability of 
the finite-element method, as well as the practical usability for typical non-linear tokamak 
MHD simulations. A demonstration for a state-of-the-art simulation of an Edge-Localised-
Mode instability in the future ITER tokamak, with realistic grid geometry, finalises the 
study.

Crown Copyright © 2022 Published by Elsevier Inc. This is an open access article under 
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. Motivations

In the current alarming climate change situation [1], nuclear fusion could provide an abundant energy source with a 
minimal level of greenhouse gas emissions and no long-lived radioactive nuclear waste. Together with renewable energies, 
fusion could contribute to the electricity of future societies, without the limit of exhaustible natural resources. Currently, the 
most promising candidate for industrial fusion reactors is the tokamak device [2], which uses a magnetic field to confine 
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a hot plasma composed of hydrogen isotopes. The toroidal, periodic nature of the tokamak ensures that the plasma’s ions 
and electrons, which approximately follow the magnetic field lines, are not lost at the end of open field lines, like in linear 
plasma devices. However, this periodicity can be subject to resonance and instability. These resonant and unstable modes 
typically involve the plasma and the magnetic field, and are often studied using magnetohydrodynamics (MHD), a model 
that combines the Navier–Stokes with Maxwell’s equations. In tokamak physics, extended MHD models are typically used, to 
account for additional kinetic or geometric effects, like diamagnetic rotation or bootstrap current [3,4].

Beyond the theoretical study of the MHD equations and the properties of various waves and unstable modes in a toka-
mak [5], numerical simulations can provide essential insight into the dynamics of plasma instabilities. In particular, these 
can determine how MHD instabilities can limit the operational capabilities of tokamak devices, which is a key aspect of 
both present machines analysis, as well as the design of future reactors. The most limiting MHD instabilities in tokamaks 
include Edge-Localised-Modes (ELMs), Toroidal Alfven Eigenmodes (TAEs) and Global instabilities (Disruptions). ELMs eject 
plasma from the edge region onto the first wall of the machine, leading to large heat-fluxes and thus potential damage to 
surface materials [6–9]. TAEs are excited by the 3.5 MeV alpha-particles born from fusion reactions, and can limit the core 
plasma pressure [10–13]. Global MHD instabilities, during which the entire plasma is affected, can lead to the total loss of 
plasma control, which is often called a disruption. During disruption events, the kinetic and magnetic energy of the plasma 
can be transferred to the wall, leading to material heat-fluxes and/or wall-currents that can damage the structural compo-
nents of the machine [14–19]. In order to study, understand and predict these MHD instabilities, numerical simulations are 
performed using codes like JOREK [20–23], M3D-C1 [24,25], NIMROD [26,27], XTOR [28], BOUT++ [29,30], MEGA [31–33], 
HALO [12] (and many others).

1.2. Numerical context

There is a wide range of finite-element methods used in the community of fusion modelling. The use of G1- or C1-
continuous finite-elements has proven essential for the practical reliability of codes like JOREK [21,23] and M3D-C1 [24,
25]. Note: G-continuity means geometrical continuity, so that derivatives are collinear on both sides of element edges, 
whereas C-continuity means parametric continuity, such that the collinear derivatives on both sides also need to have the 
same amplitude in the parametric space, which is a restricted sub-case of G-continuity. Throughout the remainder of the 
text, the term ‘practical reliability’ is meant from a user’s perspective, to describe simulations that are capable of running 
through highly non-linear phases and numerically challenging MHD dynamics. This term is used to avoid any confusion 
with ‘numerical stability’ in the variational sense, where a variation leads to a minimisation of energy-like (squared) terms, 
which is not necessarily a property of higher continuity finite-elements. Additionally, it should be pointed out that higher-
order continuity constraints, for a given polynomial order of finite-elements, implies a subspace of the full (unconstrained) 
solution space of the finite-elements; as such, higher-continuity may in fact restrict a computation from finding solutions 
that are, potentially, numerical more stable.

Nevertheless, G1/C1-continuity can be highly beneficial when dealing with physics models that include high-order spatial 
derivatives, typically 2nd order derivatives for diffusive terms like viscosity, resistivity and particle/heat diffusion, as well 
as 4th order derivatives for hyper-diffusion terms. Higher-order derivatives can be reduced numerically, either by using 
the Weak-Formulation method [34], or by using auxiliary variables, like toroidal vorticity and toroidal current in reduced-
MHD [21]. Thus, some MHD models only contain first-order derivatives in the numerical sense, but higher-order derivatives 
may be present for other terms, like hyper-diffusion, or physics effects like the Ohmic heating. Although most 2nd order 
derivatives in the JOREK full-MHD model [35] can be removed with the Weak-Formulation method, the Ohmic heating 
contains squares of 2nd order derivatives of the poloidal magnetic flux ψ , like (∂2

Rψ)2, which cannot be integrated by parts 
and removed with the Weak-Formulation. In other words, it is debatable whether higher-order elements and higher-order 
continuity are practically advantageous or not for MHD applications. However, this question can only be properly addressed 
if these higher-order methods are implemented and available, which is the primary purpose of this work, for the JOREK 
code.

Simulations of MHD models typically evolve around an equilibrium between two large force terms: the kinetic pressure 
gradient force ∇p, and the magnetic (Lorentz) force �J × �B . At equilibrium, these two terms in the momentum equation 
cancel each other out, but when dealing with instabilities, it is precisely this balance that breaks, leading to spatially finely 
localised differences arising from the ∇p − �J × �B imbalance. In particular, the thin current layers observed in previous 
non-linear MHD studies [36,37] inevitably involve large second-order derivatives, which may potentially be better resolved 
with higher-order elements. In this highly-nonlinear environment, having the flexibility to control spatial resolution either 
through h-refinement (size of the finite-elements) or p-refinement (order of polynomial basis inside finite-elements) can 
be an advantage. Although higher-order elements can be subject to Gibbs phenomenon oscillations (when localised jumps 
in the physical solution causes ripples in its polynomial representation), in the cases of reduced-MHD tested here with 
JOREK, it is observed that the higher-order elements do not have worse levels of numerical noise than the previous bi-cubic 
G1-continuous finite-element implementation, for spatially under-resolved grids. The convergence tests, presented in the 
last section of this paper, clearly show that higher-order elements become computationally cheaper if the numerical errors 
have to be minimised below a given threshold. Another motivation to include higher order elements is for the evolution 
of kinetic and/or gyro-kinetic particles with the MHD fields, as in [38,39], where 2nd (or higher) order derivatives may be 
required to evaluate the necessary magnetic and electric fields. Moreover, with coupled kinetic/fluid models, as in [11], the 
2
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number of particles inside each element needs to be projected onto the degrees-of-freedom of the element, and the overall 
noise due to this projection could potentially be reduced with a larger number of degrees-of-freedom (although this has 
not been verified in this paper).

In the wider computational physics community, there are several advanced Finite-Element platforms, such as MFEM 
[40,41], GMSH [42,43] or FIREDRAKE [44,45], that specialise in high-order p-refinement as well as continuous H(div) and 
H(Curl) methods, and that include MHD applications [46,47]. The method presented here is not yet available in these FEM 
platforms, and implementing it would likely require significant efforts, which is well beyond the scope of this paper. The 
aim of the work presented here is to certify the feasibility of the method itself, and further detailed studies will certainly be 
required to assess how it compares to these alternative finite-element methods. Nevertheless, since there is a clear benefit 
(for some applications) in using C1- and G1-continuous elements, as well as continuous H(div) and H(Curl) methods, it is 
conceivable that higher order continuity between elements may also be advantageous in certain specific cases, particularly 
for physics models that require high-order derivatives. In addition, the finite-element formulation presented here inherently 
links the order of G-continuity with the order of the element’s polynomial basis. The main reason for this is that it reduces 
the number of degrees-of-freedom, but having the flexibility to choose a certain level of G-continuity independently of the 
finite element basis could be interesting, both from a user’s perspective, as well as from a computational and numerical 
perspective. The NIMROD code [27] provides a study of MHD instabilities while varying the degree of the basis functions at 
fixed continuity level, but the ability to change the level of continuity at fixed polynomial degree could also be of interest. 
However, this would require a reformulation of the finite-element numerical structure inside JOREK, which is beyond the 
work addressed here.

1.3. Mathematical context

Substantial mathematical work has been performed in geometry regarding Bezier patches and their Gn-continuity prop-
erties [48–51], and similarly extensive work has been published on C2- and G2-continuous Bezier patches [52–54]. Before 
proceeding to the method presented here, the reader should be aware of the remarkable work of Aumann & Bentz [48], 
whose method bears great similarities to this manuscript.

In particular, it is worth noting the close resemblance of Aumann & Bentz’s last formula (18) with our formulation (45). 
Unfortunately, Aumann & Bentz’s formula (18) would not be sufficient to obtain a construction method for our particular 
case, for two key reasons. Firstly, our formulation is a nodal formulation, where neighbour finite-elements are described 
using a common vector basis at their common (shared) nodes. This nodal formulation is essential for a practical imple-
mentation in the JOREK code and enables us to reduce the number of degrees-of-freedom, while imposing continuity by 
construction of the finite-elements, independently of the values of the degrees-of freedom themselves. Secondly, Aumann 
& Bentz only considers continuity between 2 Bezier patches (i.e. in one direction), whereas our case requires continuity 
between 4 patches (i.e. in two directions). Interestingly, Aumann & Bentz’s formula is simultaneously more elaborate and 
simpler than our case: it is generalised for two patches of arbitrary polynomial order (whereas we require all patches to 
have the same odd polynomial order), but it does not provide a formulation for 4 patches meeting at the same corner node, 
requiring continuity in two directions, which our formulation provides.

However, we expect there may exist an alternative mathematical proof to the one we have provided in this manuscript, 
where one would start from our formula (45), and proceed to recover Aumann & Bentz’s formula (18), in the two direc-
tions across the two boundaries of the 4 elements that share the corner node. Unfortunately, we provide here only the 
direct proof of Gn-continuity, and cannot ascertain that this alternative proof exists, due to the nodal nature of our formu-
lation. In addition, this alternative proof might be equivalent in length and complexity to the one we have provided here. 
Nevertheless, obtaining a bridge from our work to Aumann & Bentz’s formula (18) would be of mathematical interest.

1.4. Overview of the work

In this paper, we present a generalised method for high-order Bezier finite-elements, which ensures that G-continuity in-
creases linearly with the polynomial order of the elements. The method is defined, proven, and implemented in the JOREK 
code with several numerical tests and benchmark cases. Section-2 introduces the G2-continuous Bezier finite-elements, 
which serves as an introduction to the generalised method. Section-3 presents the definition the generalised Bezier formu-
lation, together with the mathematical proofs to demonstrate G-continuity. Section-4 describes some of the key details that 
were required for the implementation of this new method in the JOREK code, and Section-5 presents the series of tests con-
ducted to demonstrate the mathematical accuracy of the new method, together with the practical usability and advantages 
of using higher-order finite-element methods for non-linear MHD instabilities in tokamaks. Finally Section-6 summarises 
the work and lays out the further improvements required for future studies of tokamak instabilities.

2. G2-continuous bi-quintic Bezier elements

2.1. Bezier curves and Bezier elements

The work presented in this paper relies on established methods of Bezier curves and elements [22,34]. Iso-parametric 
Bezier curves of order n are commonly described by the formulation of any function (including spatial coordinates) as
3



S.J.P. Pamela, G.T.A. Huijsmans, M. Hoelzl et al. Journal of Computational Physics 464 (2022) 111101
Fig. 1. (a) Cubic Bezier segments and (b) quintic Bezier segments, showing control points.

F (s) =
n∑

i=0

Bi(s) P i (1)

Where s is the element’s local coordinate, the points P i are the control points of the curve, and the Bernstein polynomials 
are defined as

Bi(s) = n!
i!(n − i)! si(1 − s)n−i (2)

Note that the control points P i can be position vectors in any spatial dimension. Whether in 3D, 2D, or even 1D, the above 
Bezier formulation F will describe a curve. This is represented for Bezier segments of order 3 and 5 in Fig.-1. For cubic 
curves, the end control points P 0 and P 3 determine the position of the segment vertices (or nodes), while the vectors 
[P 0, P 1] and [P 3, P 2] control the first derivatives (or directions) of the segments. Cubic Bezier segments can have up to 
two inflexion points. For quintic curves, the end control points P 0 and P 5 determine the position of the segment vertices, 
the first vectors [P 0, P 1] and [P 5, P 4] control the first derivatives, and the second vectors [P 1, P 2] and [P 4, P 3] control 
the second derivatives. Quintic Bezier segments can have up to four inflexion points.

Similarly, iso-parametric Bezier finite elements of order n are described in the literature [22,34] by the formulation of 
any function (including spatial coordinates) as

F (s, t) =
n∑

i=0

n∑
j=0

Bi(s)B j(t) P i j (3)

Where s and t are the element’s local coordinates, the points P i j are the control points of the elements, and the Bernstein 
polynomials are the same as defined above by (2). Again, note that the control points P i j can be position vectors in any 
dimension, but even in 3D, the above Bezier formulation F will describe a surface. In the remainder of this paper, for 
simplicity, the control points will always be assumed to be in 2D, although this changes nothing to the mathematical 
derivations, which are identical for the 3D case. 2D Bezier elements of order 3 and 5 are represented in Fig.-1. The iso-
parametric property of Bezier elements means that the spatial coordinates have the same formulation (3) as any other 
variable.

2.2. Continuity between Bezier curves or elements

The continuity between two Bezier curves or two Bezier patches is also well established in the literature [22,34], 
and repeated here for clarity. Consider two cubic Bezier curves ζ 1 and ζ 2, with control point [P 0, P 1, P 2, P 3] and 
[ Q 0, Q 1, Q 2, Q 3] respectively. The two curves are continuous, or G0-continuous, provided the two control points P 3
and Q 0 are identical. The curves are smooth, or G1-continuous, provided the vectors [P 4, P 3] and [ Q 0, Q 1] are aligned, 
such that (P 3 − P 2) = α( Q 1 − Q 0) for any non-zero positive scalar α. This is represented by Fig.-3, where α has been 
chosen to be α = 1. This condition is important with respect to the Bezier formalism of finite elements: the freedom of 
allowing α �= 1 means that finite elements can have different sizes on each side of a node, implying that the derivatives 
along the local coordinate are not continuous, only derivatives in real space are (i.e. G1 continuity).
4
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Fig. 2. (a) Bi-cubic Bezier element and (b) bi-quintic Bezier element, showing control points.

Fig. 3. G1-continuity between two cubic Bezier curves (top). G2-continuity between two quintic Bezier curves (bottom).

In order to achieve G2-continuity, such that the curvature (or second derivative) of the curves is continuous at the point 
P 3 = Q 0, the following rule (where ‘rule’ is used as synonym of ‘constraint’) must be satisfied:

(P 1 − P 2) + (P 3 − P 2) = ( Q 2 − Q 1) + ( Q 0 − Q 1) (4)

Note that in the bottom Fig.-3, the G1-continuity has also been chosen with α = 1, however the G2-continuity rule (4) is 
the same regardless of the choice of α. In addition, the curve lengths on either side of Q 0 in Fig.-3 are equal, but this is 
arbitrary, and rule (4) is independent of the lengths of each curve, which are determined by the positions of the end control 
points P 0 and Q 5.

There is an important implication from this rule for cubic Bezier lines/elements. G2 continuity at vertex P 3 in the top 
Fig.-3 would impose the choice of P 1, such that if the position of P 0 is fixed, then the first derivative value at P 0, controlled 
by P 1 is also imposed by the G2-continuity at P 3. In other words, G2-continuity at one vertex uses the control points from 
another vertex. While this may be acceptable in some simple symmetrical geometries, it greatly diminishes the flexibility of 
finite elements nodes to have their own 1st and 2nd derivatives, regardless of neighbouring nodes. This is the main reason 
to increase from cubic to quintic finite elements: since quintic curves have 6 control points, each node has its own set of 3 
control points to determine 2nd order derivatives and G2-continuity with the next curve.

2.3. Nodal formulation of bi-quintic elements

The novelty of this work consists in building upon the ground method established by [22], which provides a nodal 
formulation of bi-cubic Bezier patches with G1-continuity. As in [22], it is preferable to use a nodal formulation of the finite 
elements, and set constraints that will guarantee G0, G1 and G2 continuity of all variables for any solution of the system to 
be solved. The advantage of a nodal formulation is that it centralises the degrees-of-freedom from the four parent elements 
of a node (since with quadrangular elements, four neighbour elements have one node in common). It is an effective way 
of using Bezier patches as finite elements, and simplifies the numerical formulation required for the linear system in the 
implicit time discretisation. With Bezier patches each patch has its own, independent, control points. In a nodal formulation 
the control points of an element are split into 4 groups (one group for each node), like points [P 00, P 01, P 10, P 11] at node 
P 00 in Fig.-2a. Then, G-continuity is used to constrain the control points of all 4 parent elements at a given node, such that 
the corresponding groups of control points of the 4 parent elements share the same degrees of freedom. For example, in 
5
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Fig. 4. Nodal formulation of bi-quintic elements, focused on the first node P00 of an element similar to that represented in Fig.-2b.

Fig.-2a, there would be only 4 degrees of freedom at each node, effectively determining the position of 16 control points 
in total (one group of 4 control points for each of the 4 parent elements). To achieve this nodal formulation, we propose a 
vector basis used to locate all control points.

In this nodal formulation, each of the 4 nodes of an element serves as a reference point for its neighbouring control 
points. In Fig.-2a, for example, the 3 control points [P 01, P 10, P 11] are associated to the node P 00. Given that P 00 is 
known, the control point P 10 can be defined with a vector �U00 between P 00 and P 10 such that P 10 = P 00 +�U00. However, 
in order to impose continuity constraints, it is necessary to define this point as P 10 = P 00 +hu

00�u00. The scalar quantity hu
00

can be thought of as the size or extension of the element, at node P 00, in the horizontal direction. Likewise, in the vertical
direction, the point P 01 will be defined using another vector �v00 and element size hv

00 such that P 01 = P 00 +hv
00�v00. Of 

course, the two dimensions horizontal and vertical are relative terms here, since an element can be in any direction. It is 
important to note that the vectors �u00 and �v00 are not unit vectors, they will represent the degrees-of-freedom of the final 
linear system. These degrees-of-freedom will be shared by all 4 parent elements that share the common node P 00, so that 
the values of �u00 and �v00 will be the same for all elements, but the element sizes hu

00 and hv
00 may be different for each 

element. It is by constraining the sizes hu
00 and hv

00 on the 4 parent elements that continuity will be ensured.
In bi-cubic elements, the node value plus 3 vectors are necessary to define the 4 control points associated to each node. 

For bi-quintic elements, the node value plus 8 vectors are required. The nodal formulation, at node P 00 in Fig.-2b, is defined 
as

P 00

P 10 = P 00 +hu
00�u00

P 01 = P 00 +hv
00�v00

P 11 = P 00 +hu
00�u00 + hv

00�v00 + hw
00 �w00

P 20 = P 00 +2hu
00�u00 + hi

00
�i00 (5)

P 02 = P 00 +2hv
00�v00 + h j

00
�j00

P 21 = P 00 +2hu
00�u00 + hv

00�v00 + hi
00

�i00 + 2hw
00 �w00 + hm

00 �m00

P 12 = P 00 +2hv
00�v00 + hu

00�u00 + h j
00

�j00 + 2hw
00 �w00 + hn

00�n00

P 22 = P 00 +2hu
00�u00 + 2hv

00�v00 + hi
00

�i00 + h j
00

�j00 + 2hm
00 �m00 + 2hn

00�n00 + 4hw
00 �w00 + hk

00
�k00

where the vectors �u00, �v00, �w00, �i00, �j00, �m00, �n00, �k00, and the element sizes hu
00, hv

00, hw
00, hi

00, h j
00, hm

00, hn
00, hk

00 have been 
introduced. A representation of this formulation is shown in Fig.-4.

Similar definitions are used for the nodal formulation at nodes P 05, P 50 and P 55, to locate all control points of an 
element. It is worth noting that, as will become evident later, the choice of this particular formulation is not random. For 
example, point P 22 could simply have been defined as P 00 +hk

00
�k. However, using this mixture of vectors to represent 

various points is essential in order to simplify (as far as possible) the various G2-continuity constraints. As will be shown 
further on, in Corollary-1, this definition has the advantage that each vector corresponds to a derivative with respect to the 
local coordinates (s, t) of the element. Since the continuity constraints involve these derivatives, it is desirable to have a 
direct correspondence between the vectorial basis and the derivatives. Using a different nodal formulation would mean that 
each derivative has to be expressed as a linear combination of multiple vectors. In that case, continuity is still possible, of 
course, but the formulations required to describe continuity constraints would become increasingly complex, and render the 
mathematical demonstration difficult to follow.
6
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Using the nodal formulation (5) at the four nodes of an element, all control points (except P 00, P 50, P 05 and P 55) can 
now be substituted into the Bezier definition of a finite element (3), to write F (s, t) as

F (s, t) =
∑

xx

[
F P

xx P xx +F u
xxhu

xx�uxx + F v
xxhv

xx�vxx

+ F w
xxhw

xx �wxx + F i
xxhi

xx
�ixx + F j

xxh j
xx

�jxx (6)

+ F m
xxhm

xx �mxx + F n
xxhn

xx�nxx + F k
xxhk

xx
�kxx

]

with xx = [00,05,50,55],
where a new set of scalar basis functions F P

xx , F u
xx , ..., F k

xx , has been obtained by factorizing F (s, t) with respect to each 
vector. Thus, the vectors �u, �v , etc. represent the degrees of freedom that are used and solved in the system of linearised 
equations, while the element sizes hu , hv , etc. are fixed in time, and chosen to ensure G2-continuity between elements, 
for any values of the vectors �u, �v , etc. In practice, the finite elements can be constructed either by positioning the control 
points themselves, as would traditionally be done for Bezier patches (like in Fig.-2), or by defining the vectors �u, �v , �w , etc. 
directly at each node. However, if the elements are constructed by positioning the control points, then the vectors will need 
to be calculated by inverting (5), because it is the vectors that act as degrees of freedom, which are needed inside the code 
(not the control points). Note that inverting (5) is a trivial linear exercise.

In this case, the Bezier function F (s, t) is actually a 2D vector, but this can simply be considered to be two separate 
scalar functions X(s, t) and Y (s, t), with each set of vectors being actual scalar degrees of freedom for each function. This is 
true for any variable ψ of the system to be evaluated, and which can be seen as extra dimensions in which the Bezier patch
F resides. It is written here as vectors just to simplify the visualisation with the use of plots of 2D elements like Fig.-4.

2.4. G0-, G1- and G2-continuity constraints

Finally, constraints must be set on the elements sizes in order to ensure G2-continuity for any set of node vectors. Rather 
than simply defining those constraints and showing that G0-, G1- and G2-continuity is thus satisfied, it is better to start 
from the continuity requirements, and deduce the constraints from those. Despite being more lengthy, it will provide a 
clearer understanding why each set of constraints is chosen. To describe these constraints, let the 4 Bezier elements ξ11 , 
ξ-11, ξ1-1, and ξ-1-1 have the common node P 00. The control points of the 4 parent elements around node P 00 can be 
defined, similarly to (5), using the subscripts “11”, “1-1”, “-1-1” and “-11” for each of the 4 parent elements. Note that, by 
definition, all elements use the same vectors for the nodal formulation, but have different element sizes. Hence, on element 
ξ11, the nodal formulation is

P 10 = P 00 +hu
11�u

P 01 = P 00 +hv
11�v

P 11 = P 00 +hu
11�u + hv

11�v + hw
11 �w

P 20 = P 00 +2hu
11�u + hi

11
�i

P 02 = P 00 +2hv
11�v + h j

11
�j (7)

P 21 = P 00 +2hu
11�u + hv

11�v + hi
11

�i + 2hw
11 �w + hm

11 �m
P 12 = P 00 +2hv

11�v + hu
11�u + h j

11
�j + 2hw

11 �w + hn
11�n

P 22 = P 00 +2hu
11�u + 2hv

11�v + hi
11

�i + h j
11

�j
+2hm

11 �m + 2hn
11�n + 4hw

11 �w + hk
11

�k
while on the other three elements, minus subscripts will be used for the corresponding points and element sizes. For 
example, point P-21 (on element ξ-11), point P 2-1 (on element ξ1-1), and point P-2-1 (on element ξ-1-1), are defined as

P-21 = P 00 +2hu
-11�u + hv

-11�v + hi
-11

�i + 2hw
-11 �w + hm

-11 �m
P 2-1 = P 00 +2hu

1-1�u + hv
1-1�v + hi

1-1
�i + 2hw

1-1 �w + hm
1-1 �m (8)

P-2-1 = P 00 +2hu
-1-1�u + hv

-1-1�v + hi
-1-1

�i + 2hw
-1-1 �w + hm

-1-1 �m
Again, note that throughout the text, the terms ‘continuity rules’ are often used with the same meaning as ‘continuity 
constraints’.
7
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2.5. G0-continuity

G0-continuity requires that, apart from the common node P 00, all control points along the element sides must coincide 
on both sides of an element, such that vector sizes used to define these common points must be equal on either sides of 
an element boundary, namely

hu
1-1 = hu

11 and hu
-1-1 = hu

-11

hv
-11 = hv

11 and hv
-1-1 = hv

1-1

hi
1-1 = hi

11 and hi
-1-1 = hi

-11

h j
-11 = h j

11 and h j
-1-1 = h j

1-1

(9)

2.6. G1-continuity

Firstly, considering G1-continuity at the node itself, P 00, the requirement, as mentioned above, is that opposite vectors 
are aligned, but this is already achieved by the nodal formulation (5), since we use the same vectors �u and �v for all 
elements. Therefore, the first constraints are

hu
-11 = −α hu

11 with α > 0

hv
1-1 = −β hv

11 with β > 0
(10)

Note that the scalars α and β are related to the geometrical property of the continuity: if α = β = 1 is imposed, then 
the elements are C-continuous (with parametric continuity), but if they are not restricted to 1, then the elements are G-
continuous (geometrically continuous). In other words, α = β = 1 would impose that the parametric derivatives are equal 
on both sides of element boundaries. This would be a strongly limiting restriction, potentially problematic if two neighbour 
elements have very different sizes (areas).

Secondly, considering G1-continuity at the points directly adjacent to the node P 00, namely the control points P 01, P 10, 
P 0-1 and P-10, this requires the alignment of control points, such that

(P 11 − P 01) = −δ1(P-11 − P 01) with δ1 > 0

(P 1-1 − P 0-1) = −δ2(P-1-1 − P 0-1) with δ2 > 0

(P 11 − P 10) = −δ3(P 1-1 − P 10) with δ3 > 0

(P-11 − P-10) = −δ4(P-1-1 − P-10) with δ4 > 0

(11)

Substituting the formulations of control points from (7), (8), and using the identities (9) and (10), gives

(1 − αδ1)h
u
11�u + (hw

11 + δ1hw
-11) �w = 0

(1 − αδ2)h
u
11�u − (hw

1-1 + δ2hw
-1-1) �w = 0

(1 − βδ3)h
v
11�v + (hw

11 + δ3hw
1-1) �w = 0

(1 − βδ4)h
v
11�v + (hw

-11 + δ4hw
-1-1) �w = 0

Hence, introducing the following constraints on the w element sizes:

hw
xx = hu

xxhv
xx

with xx = [11, 1-1, -11, -1-1], (12)

and using again (9) and (10), the above simplifies to give

(1 − αδ1)h
u
11�u + hu

11hv
11(1 − αδ1) �w = 0

(1 − αδ2)h
u
11�u − βhu

11hv
11(1 − αδ2) �w = 0

(1 − βδ3)h
v
11�v + hu

11hu
11(1 − βδ3) �w = 0

(1 − βδ4)h
v
11�v − αhu

11hu
11(1 − βδ4) �w = 0

which is trivially satisfied for δ1 = δ2 = α−1 and δ3 = δ4 = β−1. Finally, G1-continuity is ensured at the points P 20, P 02, 
P-20 and P 0-2 by aligning the points

(P 12 − P 02) = −λ1(P-12 − P 02) with λ1 > 0

(P 1-2 − P 0-2) = −λ2(P-1-2 − P 0-2) with λ2 > 0

(P 21 − P 20) = −λ3(P 2-1 − P 20) with λ3 > 0

(P − P ) = −λ (P − P ) with λ > 0

(13)
-21 -20 4 -2-1 -20 4

8



S.J.P. Pamela, G.T.A. Huijsmans, M. Hoelzl et al. Journal of Computational Physics 464 (2022) 111101
The constraints to be imposed here are

hn
-11 = −α hn

11 and hn
-1-1 = −α hn

1-1

hm
1-1 = −β hm

11 and hm
-1-1 = −β hm

-11

(14)

Indeed, as before, substituting the control points definitions from (7), (8), and using the constraints (9), (10), (12) and (14), 
gives

hu
11(1 − αλ1)�u + 2hu

11hv
11(1 − αλ1) �w + hn

11(1 − αλ1)�n = 0

hu
11(1 − αλ2)�u + −2βhu

11hv
11(1 − αλ2) �w + hn

1-1(1 − αλ2)�n = 0

hv
11(1 − βλ3)�v + 2hu

11hv
11(1 − βλ3) �w + hm

11(1 − βλ3) �m = 0

hv
11(1 − βλ4)�v + −2αhu

11hv
11(1 − βλ4) �w + hm

-11(1 − βλ4) �m = 0

which holds for λ1 = λ2 = α−1 and λ3 = λ4 = β−1.

2.7. G2-continuity

As for G1-continuity, the G2-continuity constraints is first considered at the node itself, where the control points must 
satisfy the conditions

P 00 + P 20 − 2 P 10 = P 00 + P-20 − 2 P-10

P 00 + P 02 − 2 P 01 = P 00 + P 0-2 − 2 P 0-1
(15)

which can be expanded, using (7), (8) and the G0- and G1-constraints derived above, to give

hi
11

�i = hi
-1-1

�i
h j

11
�j = h j

-1-1
�j (16)

implying that the G0-constraint (9) must be extended to

hi
1-1 = hi

-11 = hi
-1-1 = hi

11

h j
1-1 = h j

-11 = h j
-1-1 = h j

11

(17)

Now, consider the G2-continuity conditions at the four control points adjacent to P 00, namely

P 01 + P 21 − 2 P 11 = P 01 + P-21 − 2 P-11

P 0-1 + P 2-1 − 2 P 1-1 = P 0-1 + P-2-1 − 2 P-1-1

P 10 + P 12 − 2 P 11 = P 10 + P 1-2 − 2 P 1-1

P-10 + P-12 − 2 P-11 = P-10 + P-1-2 − 2 P-1-1

(18)

which, once expanded, gives only the remaining terms

hm
11 �m = hm

-11 �m
hm

1-1 �m = hm
-1-1 �m

hn
11�n = hn

1-1�n
hn
-11�n = hn

-1-1�n

(19)

Hence, the set of constraints (14) must be extended to

hn
-11 = hn

-1-1 = −α hn
11 = −α hn

1-1

hm
1-1 = hm

-1-1 = −β hm
11 = −β hm

-11

(20)

At last, the G2-continuity at the remaining nodes is expressed as

P 02 + P 22 − 2 P 12 = P 02 + P-22 − 2 P-12

P 0-2 + P 2-2 − 2 P 1-2 = P 0-2 + P-2-2 − 2 P-1-2

P 20 + P 22 − 2 P 21 = P 20 + P 2-2 − 2 P 2-1

P + P − 2 P = P + P − 2 P

(21)
-20 -22 -21 -20 -2-2 -2-1

9
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which, once expanded, gives the remaining terms

hk
11

�k = hk
-11

�k
hk

1-1
�k = hk

-1-1
�k

hk
11

�k = hk
1-1

�k
hk
-11

�k = hk
-1-1

�k

(22)

Now, this leads to the final constraint on the element size for the �k vectors:

hk
xx = hi

xxh j
xx

with xx = [11, 1-1, -11, -1-1],
(23)

Using this rule, together with (17), the above is trivially satisfied.
For convenience, the G2-continuity constraints are summarised here:

hu
-1-1 = hu

-11 = −α hu
1-1 = −α hu

11 (24)

hv
-1-1 = hv

1-1 = −β hv
-11 = −β hv

11 (25)

hi
1-1 = hi

11 = hi
-1-1 = hi

-11 (26)

h j
-11 = h j

11 = h j
-1-1 = h j

1-1 (27)

hm
1-1 = hm

-1-1 = −β hm
11 = −β hm

-11 (28)

hn
-11 = hn

-1-1 = −α hn
11 = −α hn

1-1 (29)

hw
xx = hu

xxhv
xx (30)

hk
xx = hi

xxh j
xx (31)

with xx = [11, 1-1, -11, -1-1],
3. Generalised formulation: beyond G2 continuity

The nodal formulation (5), and the element-size constraints ((24)-(31)) can be generalised to provide Bezier elements of 
arbitrary odd order n, with G-continuity of order (n −1)/2. This generalisation requires the definition of a nodal formulation 
at any odd order n. The order n must be odd such that all nodes have the same number of associated control points. Note 
that continuity of order (n − 1)/2 is obtained since in a given direction, there are (n + 1) control points, including the end 
nodes, hence (n + 1)/2 control points for each node, one being the value of a variable, and then one for each derivative, 
such that (n − 1)/2 derivatives can be controlled. At each node, there are (n + 1)2/4 degrees of freedom. Note that this is 
specific to the 2D case: in 3D, with eight elements sharing a common node, there would be [(n +1)/2]3 degrees of freedom.

3.1. Notation for the derivatives of control points

Before defining the general formulation, it helps to understand the structure of G-continuity requirements.

Notation-1. G1-continuity
Let direction x denote the first index of control points P i j , and direction y the second index. The first derivative, in the 
direction x, at a border point P 0 j is defined by


1
x P 0 j = P 0 j − P 1 j, for any j. (32)

On the opposite element, it is defined as


−1
x P 0 j = P 0 j − P-1 j, for any j. (33)

Likewise, the first derivative in the y direction is defined by


1
y P i0 = P i0 − P i1, for any i (34)

and, on the opposite element,


−1
y P i0 = P i0 − P i-1, for any i. (35)
10



S.J.P. Pamela, G.T.A. Huijsmans, M. Hoelzl et al. Journal of Computational Physics 464 (2022) 111101
The four parent elements of node P 00 are G1-continuous provided


−1
x P 0 j = −λ1


1
x P 0 j, (36)


−1
y P i0 = −λ2


1
y P i0, (37)

for any indices i, j in interval [−(n-1)/2, (n-1)/2], and any positive real scalars λ1, λ2.

Notation-2. G-continuity of order m
The m-th derivative, in direction x, at point P 0 j , is defined by


m
x P 0 j = 
m-1

x P 0 j −
m-1
x P 1 j (38)

Just like standard derivatives, it is trivial to demonstrate by induction that this is equivalent to


m
x P 0 j =

m∑
i=0

(−1)i
(

m

i

)
P i j (39)

Likewise, on the opposite element, the m-th derivative can be written as


-m
x P 0 j =

m∑
i=0

(−1)i
(

m

i

)
P-i j (40)

Similarly, at point P i0, the m-th derivatives, in direction y, on two opposite elements, are defined as


m
y P i0 =

m∑
j=0

(−1) j
(

m

j

)
P i j (41)


-m
y P i0 =

m∑
j=0

(−1) j
(

m

j

)
P i- j (42)

Unlike the G1-continuity requirement ((36)-(37)), G-continuity of order m requires equality of the m-th derivatives on either 
sides of a node, namely


m
x P 0 j = 
−m

x P 0 j, (43)


m
y P i0 = 
−m

y P i0, (44)

It is important to note that we use a sub-case version of G-continuity definition. Generic G1- and G2-continuity def-
initions can be found in [52,53] respectively. In the most general case, G1-continuity would not require derivatives to be 
collinear, but in this particular sub-case, it does. Likewise, in the generic case, G2-continuity involves both the second, first 
and zero derivatives of control points, but in this study, we only consider the second derivatives for the G2-continuity con-
straint (which does not mean that lower derivatives are not continuous). The main advantage of the more generic continuity 
definition is that they allow the degrees of freedom to be shifted from the control points to the polynomial representation 
of boundaries between elements. One of the main outcomes of such a generic method is that it allows control points to be 
“misaligned”, enabling strong angles between elements at a given node. For example, it would allow G1-continuity without 
requiring the points P 4, Q 0 and Q 1 in the bottom Fig.-3 to be collinear. Such a generic method is, however, beyond the 
scope of this paper and should be considered in future studies.

The notation of control point derivatives (39), (41), together with the continuity constraints (43), (44) can be derived 
simply by evaluating the derivative of the Bezier formula (3) at s = 0 or s = 1 (or t = 0 and t = 1). This derivation is not 
detailed here, but its method can be seen in [22] for G1-continuity, and is identical for higher-order derivatives.

Now, consider the generic Bezier 1D-derivative identity (39) as a function of the control points. The ideal nodal formula-
tion to satisfy these conditions is one that automatically simplifies the derivative at any order. This should be, of course, in 
both directions i and j. As will become clear below, the generic formulation is nothing less than a construction similar to 
mixed 2D-derivatives.

3.2. Generalised nodal formulation of Bezier elements

Definition-1. For Bezier elements of any odd polynomial order n, the nodal formulation of control points P i j and vectors 
�u ij is defined as
11
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P i j = hij �u ij +
i∑

k=0

j∑
l=0

(−1)1+i+ j+k+l(1 − δkiδl j)

(
i

k

)(
j

l

)
P kl (45)

where

0 ≤ i < (n + 1)/2

0 ≤ j < (n + 1)/2

δab is the Kronecker delta

hij are the sizes of each component of the nodal vectorial basis.

P 00 = h00�u 00 := P 00

Definition-2. The notation of the element sizes for the 4 parent elements of a node are expressed as hij , h-i j , hi- j and h-i- j , 
and they are constrained with the following rules

for any j, h-i j is constrained by

h-i j =
{

−α hij for i = 1 and α > 0

hij for i �= 1
(46)

for any i, hi- j is constrained by

hi- j =
{

−β hij for j = 1 and β > 0

hij for j �= 1
(47)

Note that Definition-1 is clearly just a mixture of the derivatives (39) in two dimensions. The Kronecker-delta functions 
are simply required to remove the re-occurrence of the point P i j in the double-sum term. Also, note that formula (45) can 
be used, recursively, to define either the points P i j given the vectors �uij , or inversely to define the vectors �uij given the 
points P i j . Using these two definitions, it can be demonstrated that G-continuity is ensured at order (n − 1)/2. Before this 
can be achieved, some necessary properties of the definitions must first be obtained.

3.3. G1- and G2-continuity demonstration

The final proof of G-continuity is done by induction, and therefore G1- and G2-continuity must first be proven.

Proposition-1. The nodal formulation P i j defined in Definition-1, together with the element size constraints defined in Definition-2, 
ensures G1-continuity between Bezier elements.

Proof. Consider G1-continuity in the x direction. G1-continuity at the node P 00 itself (i.e. at j = 0) is trivial, since expanding 
the nodal formulation (45) at points P 10 and P-10 gives

P 10 = P 00 + h10�u10 (48)

P-10 = P 00 + h-10�u10 (49)

where of course, by definition, the nodal formulation implies that �u-10 = �u10. The above can be rearranged and written as


1
x P 00 = − h10�u10 (50)


−1
x P 00 = − h-10�u10 = αh10�u10 = − α
1

x P 00 (51)

where rule (46) of Definition-2 was used. Thus, the G1-continuity rule (36) is satisfied with λ1 = α. Similarly, at j = 1, 
points P 11 and P-11 can be expressed, using (45), as

P 11 = h11�u11 − P 00 + P 01 + P 10 = h11�u11 − 
1
x P 00 + P 01 (52)

P-11 = h-11�u11 − P 00 + P 01 + P-10 = − αh11�u11 − 
−1
x P 00 + P 01 (53)

where rule (46) of Definition-2 was used. However, G1-continuity at P 00 already provides an expression for 
−1
x P 00 in 

(51), such that the above can be rearranged as
12
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1
x P 01 = −h11�u11 + 
1

x P 00 (54)


−1
x P 01 = + αh11�u11 − α
1

x P 00 (55)

Thus, the G1-continuity rule (36) is satisfied at P 01 with λ1 = α.
We now proceed by induction. Assume G1-continuity holds at point P 0,( j-1) , such that 
−1

x P 0l = −α
1
x P 0l for all 

l ≤ j − 1. Then, expressing P 1 j using the nodal formulation (45) gives

P 1 j = h1 j �u1 j +
1∑

k=0

j∑
l=0

(−1) j+k+l(1 − δk1δl j)

(
j

l

)
P kl

= h1 j �u1 j +
j∑

l=0

(−1) j+l
(

j

l

)
P 0l +

j∑
l=0

(−1)1+ j+l(1 − δl j)

(
j

l

)
P 1l

= h1 j �u1 j + P 0 j +
j−1∑
l=0

(−1) j+l
(

j

l

)
P 0l +

j−1∑
l=0

(−1)1+ j+l
(

j

l

)
P 1l

= h1 j �u1 j + P 0 j +
j−1∑
l=0

(−1) j+l
(

j

l

)
(P 0l − P 1l)

= h1 j �u1 j + P 0 j +
j−1∑
l=0

(−1) j+l
(

j

l

)

1

x P 0l (56)

Similarly, point P-1 j is expanded to give

P-1 j = h-1 j �u1 j + P 0 j +
j−1∑
l=0

(−1) j+l
(

j

l

)
(P 0l − P-1l)

= − αh1 j �u1 j + P 0 j +
j−1∑
l=0

(−1) j+l
−1
x P 0l (57)

where rule (46) of Definition-2 was used. However, since the sum term in (57) is only up to j − 1, G1-continuity applies for 

−1

x P 0l by assumption, which can be replaced by −α
1
x P 0l . Therefore, (56) and (57) can be rearranged to write


1
x P 0 j = −h1 j �u1 j −

j−1∑
l=0

(−1) j+l
(

j

l

)

1

x P 0l (58)


−1
x P 0 j = +αh1 j �u1 j + α

j−1∑
l=0

(−1) j+l
(

j

l

)

1

x P 0l (59)

In other words, the G1-continuity rule (36) is satisfied at P 0 j with λ1 = α. Hence, by induction, since we know that G1-
continuity is valid at point P 01, it follows that G1-continuity is valid at all points P 0 j for j ≤ (n − 1)/2. The demonstration 
for negative j is almost identical. Likewise, the above demonstration for G1-continuity in the y direction, at any point P i0, 
is also identical, by swapping indices. This completes the proof, that the nodal formulation of Definition-1 and Definition-2
satisfies G1-continuity between Bezier elements. �
Proposition-2. The nodal formulation of P i j defined in Definition-1, together with the element size constraints defined in Definition-2, 
ensures G2-continuity between Bezier elements.

Proof. As with the G1-continuity proof, consider G2-continuity in the x direction. Expand point P 20 using the nodal for-
mulation (45),

P 20 = h20�u20 +
2∑

k=0

(−1)1+k(1 − δk2)

(
2

k

)
P k0

= h20�u20 − P 00 + 2 P 10 (60)

However, the second derivative is defined as 
2
x P 00 = P 00 −2 P 10 + P 20, so that the above can be rearranged as
13
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2
x P 00 = h20�u20

Likewise, on the opposite side,


−2
x P 00 = h-20�u20

= h20�u20

where rule (46) of Definition-2 was used. Thus, 
2
x P 00 = 
−2

x P 00, so that G2-continuity is satisfied at P 00.
Next, we proceed by induction. Assume G2-continuity holds at point P 0,( j-1) , such that 
2

x P 0l = 
−2
x P 0l for all l ≤ j −1. 

Then, expressing P 2 j using the nodal formulation,

P 2 j = h2 j �u2 j +
2∑

k=0

j∑
l=0

(−1)1+ j+k+l(1 − δk2δl j)

(
2

k

)(
j

l

)
P kl

= h2 j �u2 j +
j∑

l=0

(−1)1+ j+l
(

j

l

)
P 0l + 2

j∑
l=0

(−1) j+l
(

j

l

)
P 1l +

j∑
l=0

(−1)1+ j+l(1 − δl j)

(
j

l

)
P 2l

= h2 j �u2 j − P 0 j + 2 P 1 j

+
j−1∑
l=0

(−1)1+ j+l
(

j

l

)
P 0l + 2

j−1∑
l=0

(−1) j+l
(

j

l

)
P 1l +

j−1∑
l=0

(−1)1+ j+l
(

j

l

)
P 2l (61)

which can simply be rearranged as


2
x P 0 j = h2 j �u2 j +

j−1∑
l=0

(−1)1+ j+l
(

j

l

)
(P 0l −2 P 1l + P 2l)

= h2 j �u2 j +
j−1∑
l=0

(−1)1+ j+l
(

j

l

)

2

x P 0l (62)

Likewise, on the opposite side,


−2
x P 0 j = h-2 j �u2 j +

j−1∑
l=0

(−1)1+ j+l
(

j

l

)
(P 0l −2 P-1l + P-2l)

= h2 j �u2 j +
j−1∑
l=0

(−1)1+ j+l
(

j

l

)

−2

x P 0l (63)

where rule (46) of Definition-2 was used for h-2 j = h2 j . However, since G2-continuity holds for l ≤ j − 1, the sum term 
in (63) is equivalent to the sum term in (62), such that 
2

x P 0 j = 
−2
x P 0 j . Hence, by induction, G2-continuity in the x

direction is satisfied for all j between 0 and (n − 1)/2. For negative j, the demonstration is identical. Likewise, in the y
direction, the demonstration is identical, by switching indices. �
3.4. G-continuity demonstration

Proposition- 3. If the Bezier elements are G-continuous at order m, in direction x, then for any index i such that 1 < i ≤ m, the 
following identity holds,

P i j − P-i j = − i (α + 1)(P 0 j − P 1 j) (64)

for any index j, and where α is the positive scalar of the G1-continuity rule in the x direction from (46).

Proof. First, consider G1-continuity at point P 0 j , which implies that


−1
x P 0 j = − α 
1

x P 0 j

=⇒ P 0 j − P-1 j = − α(P 0 j − P 1 j) (65)

Then, consider G2-continuity at point P 0 j , so that
14
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2
x P 0 j = 
−2

x P 0 j

=⇒ P 0 j − 2 P 1 j + P 2 j = P 0 j − 2 P-1 j + P-2 j

=⇒ P 2 j − P-2 j = 2 P 1 j − 2 P-1 j

=⇒ P 2 j − P-2 j = 2(P 1 j − P 0 j) − 2(P-1 j − P 0 j) (66)

Substituting for (65) into (66) gives

P 2 j − P-2 j = 2(P 1 j − P 0 j) + 2 α(P-1 j − P 0 j)

=⇒ P 2 j − P-2 j = −2(α + 1)(P 0 j − P 1 j) (67)

Next, we proceed by induction. Assume that identity (64) holds for all values of i − 1 up to some i − 1 < m. Then, since 
G-continuity holds at order i, the following identity can be written,


i
x P 0 j = 
−i

x P 0 j

=⇒
i∑

k=0

(−1)k
(

i

k

)
P kj =

i∑
k=0

(−1)k
(

i

k

)
P-kj

=⇒ (−1)i P i j +
i−1∑
k=0

(−1)k
(

i

k

)
P kj = (−1)i P-i j +

i−1∑
k=0

(−1)k
(

i

k

)
P-kj

=⇒ P i j − P-i j = −(−1)i
i−1∑
k=0

(−1)k
(

i

k

)
(P kj − P-kj) (68)

However, since the right-hand side sum term only goes up to i − 1, by assumption, we can apply identity (64), to write (68)
as

P i j − P-i j = + (−1)i
i−1∑
k=0

(−1)k
(

i

k

)
k(α + 1)(P 0 j − P 1 j) (69)

Now, most of the terms in the right-hand side sum term are independent of the summation index k, so they can simply be 
extracted from the sum, such that (69) becomes

P i j − P-i j = + (−1)i(α + 1)(P 0 j − P 1 j)

i−1∑
k=0

(−1)k
(

i

k

)
k (70)

The sum term is now close to a known binomial identity [55], which states that

i∑
k=0

(−1)k
(

i

k

)
k = 0

=⇒
i−1∑
k=0

(−1)k
(

i

k

)
k = −(−1)i i (71)

Hence, (70) becomes

P i j − P-i j = − (−1)2i i(α + 1)(P 0 j − P 1 j)

= − i (α + 1)(P 0 j − P 1 j) (72)

By induction, since identity (64) was shown for i = 2, this completes the proof up to i = m. �
Theorem- 1. With the nodal formulation of P i j defined in Definition-1, together with the element size constraints defined in 
Definition-2, Bezier elements are G-continuous at order (n − 1)/2 for any value of the vectors �u ij .

Proof. This proof is a little intricate, because it contains a proof-by-induction within a proof-by-induction. Since 
Proposition-2 already shows that G-continuity holds at order = 2, the first induction is on the order of the G-continuity, 
proving that if G-continuity holds for i − 1, then it also does for i. However, this procedure is also done by induction for 
the second index j of the point P 0 j , showing that if G-continuity of order i holds for P 0,( j-1) , then it also does for P 0 j .
15
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Hence, assume that G-continuity holds up to order i − 1 for some 2 ≤ i − 1 < (n − 1)/2. Consider the G-continuity 
requirement, in direction x, at order i. Exactly like the above (68), this gives


i
x P 0 j = 
−i

x P 0 j

=⇒ P i j − P-i j = −(−1)i
i−1∑
k=0

(−1)k
(

i

k

)
(P kj − P-kj) (73)

Again, since the right-hand side sum term only goes up to i − 1, by assumption, we can apply identity (64), to write (73) as

P i j − P-i j = + (−1)i
i−1∑
k=0

(−1)k
(

i

k

)
k(α + 1)(P 0 j − P 1 j) (74)

which, as in the demonstration of Proposition-3, gives

P i j − P-i j = − i (α + 1)(P 0 j − P 1 j) (75)

Thus, in order to prove that G-continuity holds at order i, we need to show that the above identity (75) is true. First, 
consider P i j − P-i j for j = 0, by expanding using the nodal formulation (45) of Definition-1,

P i0 − P-i0 = �ui0(hi0 − h-i0) +
i∑

k=0

(−1)1+i+k(1 − δki)

(
i

k

)
(P k0 − P-k0)

=
i−1∑
k=0

(−1)1+i+k
(

i

k

)
(P k0 − P-k0) (76)

where rule (46) of Definition-2 was used for h-i0 = hi0, for any i > 1. Now, since the sum term in (76) only goes up to i − 1, 
we can use identity (64) to write it as

P i0 − P-i0 = −(−1)1+i (α + 1)(P 00 − P 10)

i−1∑
k=0

(−1)k
(

i

k

)
k (77)

which, using (71), is simply

P i0 − P-i0 = (−1)1+2i i (α + 1)(P 00 − P 10)

= −i (α + 1)(P 00 − P 10) (78)

which demonstrates G-continuity for j = 0. Next, consider j = 1, and expand P i1 − P-i1 using the nodal formulation (45)
of Definition-1,

P i1 − P-i1

=�������ui1(hi1 − h-i1) +
i∑

k=0

1∑
l=0

(−1)i+k+l(1 − δkiδl1)

(
i

k

)
(P kl − P-kl)

=
i∑

k=0

(−1)i+k
(

i

k

)
(P k0 − P-k0) +

i∑
k=0

(−1)1+i+k(1 − δki)

(
i

k

)
(P k1 − P-k1)

=
i∑

k=0

(−1)i+k
(

i

k

)
(P k0 − P-k0) +

i−1∑
k=0

(−1)1+i+k
(

i

k

)
(P k1 − P-k1)

= (P i0 − P-i0) +
������������i−1∑
k=0

(−1)i+k
(

i

k

)
(P k0 − P-k0) +

�������������i−1∑
k=0

(−1)1+i+k
(

i

k

)
(P k1 − P-k1)

= (P i0 − P-i0) (79)

where the cancellation of the two sum terms is obvious since (−1)1 = −1 can simply be extracted from the sum. The 
cancellation of (hi1 − h-i1) comes from the definition of element sizes (46) for i > 1. Next, (78) implies that the above can 
be written as

P i1 − P-i1 = −i (α + 1)(P 00 − P 10) (80)
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which demonstrates G-continuity for j = 1. Now, we proceed by induction. Assume that identity (75) holds up to some 
j − 1. Then, expanding P i j − P-i j with the nodal formulation (45) of Definition-1,

P i j − P-i j

=�������uij(hij − h-i j) +
i∑

k=0

j∑
l=0

(−1)1+i+ j+k+l(1 − δkiδl j)

(
i

k

)(
j

l

)
(P kl − P-kl)

=
j∑

l=0

(−1)1+ j+l(1 − δl j)

(
j

l

)
(P il − P-il) +

i−1∑
k=0

j∑
l=0

(−1)1+i+ j+k+l
(

i

k

)(
j

l

)
(P kl − P-kl)

=
j−1∑
l=0

(−1)1+ j+l
(

j

l

)
(P il − P-il) +

i−1∑
k=0

j∑
l=0

(−1)1+i+ j+k+l
(

i

k

)(
j

l

)
(P kl − P-kl) (81)

Now, by assumption, since the first term only goes up to j − 1, identity (75) can be used. Likewise, by assumption, since we 
have assumed G-continuity up to i − 1, identity (64) can be used for the second term. Thus, (81) can be written as

P i j − P-i j

= − (α + 1)i
j−1∑
l=0

(−1)1+ j+l
(

j

l

)
(P 0l − P 1l)

− (α + 1)

i−1∑
k=0

j∑
l=0

(−1)1+i+ j+k+l
(

i

k

)(
j

l

)
i(P 0l − P 1l) (82)

Now, the second term is separated to isolate the k-sum as much as possible, such that

P i j − P-i j

= − (α + 1)i
j−1∑
l=0

(−1)1+ j+l
(

j

l

)
(P 0l − P 1l)

− (α + 1)i
j∑

l=0

(−1)1+i+ j+l
(

j

l

)
(P 0l − P 1l)

[
i−1∑
k=0

(−1)k
(

i

k

)]
(83)

However, this is also a well known binomial identity, such that

i∑
k=0

(−1)k
(

i

k

)
= 0

=⇒
i−1∑
k=0

(−1)k
(

i

k

)
= −(−1)i

Hence, (83) can be written as

P i j − P-i j

= − (α + 1)i
j−1∑
l=0

(−1)1+ j+l
(

j

l

)
(P 0l − P 1l)

+ (α + 1)i
j∑

l=0

(−1)1+ j+l
(

j

l

)
(P 0l − P 1l)

= −
���������������

(α + 1)i
j−1∑
l=0

(−1)1+ j+l
(

j

l

)
(P 0l − P 1l)

− i (α + 1)(P 0 j − P 1 j) +
������������

(α + 1)i
j−1∑

(−1)1+ j+l
(

j

l

)
(P 0l − P 1l)
��� l=0
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= − i (α + 1)(P 0 j − P 1 j) (84)

which demonstrates, by induction, that identity (75) holds for all positive j ≤ (n − 1)/2. The proof for all negative j is 
identical.

Thus, this completes the proof that G-continuity of order i holds if it is assumed at order i − 1, in the x direction. 
Therefore, G-continuity holds for all i up to (n − 1)/2, since G-continuity was shown for i = 2. The same holds for the 
y-direction, for which an analogue of Proposition-3 can be obtained in the y-direction, such that the above proof can be 
repeated, with switched indices, in the y-direction. �
3.5. Derivatives identity

Note that the generalised nodal formulation of Definition-1 is very similar to the derivatives definition (39), but in two 
dimensions. In fact, a notable property of Definition-1 is the following corollary.

Corollary-1. For the nodal formulation of P i j defined in Definition-1, any derivative of order ( f , g) at the element node P 00 , with 
f + g > 0, corresponds to the vector �u f g , namely

∂
f

s ∂
g
t F (0,0) = n!

(n − f )!
n!

(n − g)! h f g �u f g (85)

Proof. Expanding the Bezier formulation (3) gives

F (s, t) =
n∑

i=0

m∑
j=0

(
n

i

)(
m

j

)
si(1 − s)n−it j(1 − t)m− j P i j (86)

where the polynomial orders have been separated between n and m, because it is important to distinguish between the 
two for this derivation, but in reality, m = n. Now, consider the derivative of order f for the two composites of a Bernstein 
polynomial,

∂
f

s

[
si

]
=

{
i!

(i− f )! si− f for 0 ≤ f ≤ i

0 for f > i

∂
f

s

[
(1 − s)n−i

]
=

{
(n−i)!

(n−i− f )! (−1) f (1 − s)n−i− f for 0 ≤ f ≤ n − i

0 for f > n − i

Evaluated at s = 0, this gives

∂
f

s

[
si

]∣∣∣∣∣
s=0

=
{

i! for f = i

0 for f �= i
(87)

∂
f

s

[
(1 − s)n−i

]∣∣∣∣∣
s=0

=
{

(n−i)!
(n−i− f )! (−1) f for 0 ≤ f ≤ n − i

0 for f > n − i
(88)

Next, consider the derivative of the factor of two functions of I(s) and J (s), namely,

∂
f

s

[
I J

]
=

f∑
a=0

(
f

a

)(
∂ a

s I
)(

∂
f −a

s J
)

and substitute the functions with the Bernstein polynomial components, such that I = si and J = (1 − s)n−i . Then

∂
f

s

[
si(1 − s)n−i

]
=

f∑
a=0

(
f

a

)(
∂a

s

[
si])(

∂
f −a

s
[
(1 − s)n−i]) (89)

From (87), it follows that the above is zero at s = 0 unless a = i. In addition, since the summation goes from a = 0 to a = f , 
the above is also zero if i > f . Hence, evaluating (89) at s = 0 gives

∂
f

s

[
si(1 − s)n−i

]∣∣∣∣∣
s=0

=
{( f

i

)
i!
(
∂

f −i
s

[
(1 − s)n−i

])
for i ≤ f

0 for i > f
(90)

However, from (88), it also follows that the above is zero if f − i > n − i, such that (90) becomes
18
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∂
f

s

[
si(1 − s)n−i

]∣∣∣∣∣
s=0

=
{( f

i

)
i!(−1) f −i (n−i)!

(n− f )! for i ≤ f ≤ n

0 otherwise
(91)

Now, the Bezier function (86) can be derived with respect to s and t , such that

∂
f

s ∂
g
t F (s, t) =

n∑
i=0

m∑
j=0

(
n

i

)(
m

j

)
∂

f
s

[
si(1 − s)n−i

]
∂

g
t

[
t j(1 − t)m− j

]
P i j

Thus, evaluating at s = 0 and t = 0, and using (91), the above becomes

∂
f

s ∂
g
t F (s, t)

∣∣∣∣∣
s=0,t=0

=
n∑

i=0

m∑
j=0

(
n

i

)(
m

j

)[( f

i

)
i!(−1) f −i (n − i)!

(n − f )!
][(g

j

)
j!(−1)g− j (m − j)!

(m − g)!
]

P i j

=
n∑

i=0

m∑
j=0

(−1) f +g−i− j n!
(n − f )!

m!
(m − g)!

(
f

i

)(
g

j

)
P i j

= n!
(n − f )!

m!
(m − g)!

n∑
i=0

m∑
j=0

(−1) f +g−i− j
(

f

i

)(
g

j

)
P i j (92)

for i ≤ f ≤ n and j ≤ g ≤ m (zero otherwise)

However, since the above is valid only for i ≤ f and j ≤ g , the two sums are valid only up to f and g respectively, so that 
(92) simplifies to

∂
f

s ∂
g
t F (s, t)

∣∣∣∣∣
s=0,t=0

= n!
(n − f )!

m!
(m − g)!

f∑
i=0

g∑
j=0

(−1) f +g+i+ j
(

f

i

)(
g

j

)
P i j (93)

where, of course, the identity (−1)−i = (−1)i was used. Now, note that at i = f and j = g the summation term in (93)
simply gives P f g . By using the Kronecker delta function, (93) can thus be written as

∂
f

s ∂
g
t F (s, t)

∣∣∣∣∣
s=0,t=0

= n!
(n − f )!

m!
(m − g)!

[
P f g −

f∑
i=0

g∑
j=0

(−1)1+ f +g+i+ j(1 − δi f δ jg)

(
f

i

)(
g

j

)
P i j

]
(94)

This completes the proof, since the bracket term is none other than the nodal formulation (45) of Definition-1, namely

∂
f

s ∂
g
t F (s, t)

∣∣∣∣∣
s=0,t=0

= n!
(n − f )!

m!
(m − g)!h f g �u f g �

4. Implementation in the non-linear MHD code JOREK

4.1. The JOREK code

The above formulation is implemented in the JOREK code [20–23]. JOREK uses a finite-element grid in the poloidal 
plane, with finite Fourier series in the toroidal direction. The finite elements are quadrangular Bezier elements using a 
nodal formulation equivalent to the generalised formulation in Definition-1 and Definition-2 with polynomials of order 
3, and thus G-continuity of order 1 [22]. The Fourier series used in the toroidal direction can be chosen with arbitrary 
toroidal periodicity, meaning that with 3 Fourier modes and a toroidal periodicity of 4, the physical toroidal mode numbers 
simulated would be n = 4, 8, 12. Typically, when producing linear stability scans, a single Fourier mode is used, while 
scanning the toroidal periodicity. For non-linear simulations, multiple Fourier modes are used, with a periodicity of 1 or 2.

The time discretisation used in JOREK is fully implicit, with a choice between the Crank-Nicolson or the Gear’s scheme. 
This implicit method results in a linearised system of equations, for which a sparse matrix needs to be inverted. This is 
done either with a direct solve, or using a preconditioned GMRES iterative solver. In practice, the direct solve approach is 
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only used for the toroidally axisymmetric kinetic equilibrium n = 0, while for non-linear cases, the GMRES method is em-
ployed. The GMRES preconditioner is equivalent to a Block-Jacobi preconditioner, which is obtained by solving each toroidal 
harmonic block of the matrix individually (i.e. without the harmonic coupling), and these blocks are dealt with individually, 
in parallel, with a direct solve. The direct solves (either for the preconditioner harmonic-blocks, or for the whole system) is 
done using open-source solvers like MUMPS [56–58], PASTIX [59,60] or STRUMPACK [61,62]. Further developments on the 
preconditioner have recently been implemented in the JOREK code, allowing the preconditioner blocks to include multiple 
Fourier harmonics, with their respective non-linear interactions [63].

The Weak Formulation method [34] is used for all equations, which are multiplied by a test-function and integrated over 
the element surfaces. The test-functions are chosen to be the basis functions obtained from the nodal formulation, as in (6), 
or as described in the next section. One of the main advantages of the weak formulation is that it allows integration by 
parts of divergence terms, which allows the removal of all 2nd order derivatives from the system. This was a significant ad-
vantage when using G1-continuous finite-elements in the past, like those implemented in JOREK [22], since all terms in the 
equations were guaranteed to be smoothly represented, thus reducing numerical noise and improving practical reliability.

The physics models of JOREK includes visco-resistive models for both full-MHD and reduced-MHD [35]. The equations 
are normalised using two constants: the vacuum permeability μ0, and the central density ρ0. This normalisation is similar 
to the Alfven time normalisation, such that for a deuterium plasma with central particle density no = 6 × 1019 m−3, a 
normalized time unit corresponds to approximately 0.5μs. Note that this is a pseudo-normalisation, where not all variables 
are dimensionless in the final formulation. In particular, the magnetic field is not normalised.

4.2. The basis functions

The full formulation of any variable ψ (as well as spatial variables R and Z ) on one finite element, including the Fourier 
series, is given by

ψ(s, t) =
4∑

j=1

n−1
2∑

k=0

n−1
2∑

l=0

N∑
m=0

[
ψkl

jm Fklj(s, t) hkl
j eimφ

]
(95)

j : sum on 4 element nodes

k : sum on first vector index

l : sum on second vector index

m : sum on N Fourier modes

F j,k,l(s, t) : nodal basis functions as in (6)

hkl
j : element sizes

φ : toroidal angle

ψkl
jm : variable values for each degree of freedom

Note, with respect to the generalised formulation (45), the ψkl
jm values are the equivalent of the vectorial basis �u ij , but 

for any variable ψ , including spatial coordinates. Once the nodal formulation (45) has been calculated for a given polynomial 
order n, the basis functions F jkl of this nodal basis need to be calculated as the coefficients obtained from the factorization 
of the Bezier formula (3) with respect to each �u ij term, as in (6). For bi-cubic G1-continuous elements, this is easily done 
by hand. For bi-quintic G2-continuous elements, the basis functions and their derivatives with respect to s and t can be 
calculated by hand, although this is already tedious. The s- and t-derivatives are required up to order 2 in the code, which 
means 5 derivatives in total (plus the absolute value), for each basis function component. For bi-quintic G2-continuous 
elements, this gives a total of: 4 nodes, times [(n + 1)/2]2 basis vectors, times 6 derivatives (including zeroth derivative); 
hence 216 functions to calculate and include in the code. For elements of order n = 7, there are 384, and for n = 11, there 
are 864.

Thus, although the basis functions and their derivatives can be calculated by hand for bi-quintic elements, at higher order 
this is not feasible without a considerable risk of human error. It is much safer to do this analytical calculation numerically, 
which can be done relatively easily with analytical algebra libraries like Python’s symbols library, Sympy [64]. Using this 
library, the Fortran module of JOREK that includes the basis function formulas is auto-generated for any polynomial order n.

It is worth highlighting the fact that continuity is not ‘imposed’ in the matrix of the final linear system. Expressions 
(45) and (95) are nodal formulations, meaning that the degrees of freedom, namely the �u ij in (45) and the ψkl

jm in (95), 
are shared between neighbouring elements at their common nodes. Thus, any solution of the linear system will always 
be continuous, provided the elements have been properly constructed, respecting the continuity constraints (46) and (47). 
In other words, continuity is not imposed inside the linear system, it is ensured by the geometrical construction of the 
elements with respect to their neighbours, for which expressions (45), (46) and (47) are the recipe. Formula (95) is the 
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recipe to reconstruct the solution inside one element, given the values of the degrees-of-freedom at each of the 4 nodes, 
but with the finite-element method, as explained in Section-3.2 of [22], the final linear system uses the shared degrees-of-
freedom at each node independently, with contributions from the 4 parent elements through the Weak-Form integration. 
Thus, at each node, there are N[(n − 1)/2]2 degrees-of-freedom.

4.3. Gaussian integration

The weak-formulation of JOREK requires integration over each element. This is done using Gaussian quadrature, for 
which the number of Gaussian integration points (and weights) needs to correspond to the polynomial order of the Bezier 
elements. Although trivially obtained from Python libraries like Numpy [65], this also requires the auto-generation of a small 
module in the JOREK code (for polynomial orders n > 7), to register these Gaussian integration points and weights.

4.4. The mesh generators and initial conditions

The JOREK code includes a large variety of mesh generators, adapted to complex magnetic configurations in tokamaks, 
and with adaptive extensions to arbitrary wall structures [66]. These grid generators had to be adapted to include higher 
order polynomials. The alignment of the grids, along the background magnetic flux surfaces, is done up to second derivatives, 
which is largely sufficient for most applications, and thus for polynomial orders n ≥ 7, the derivatives of order ≥ 3 are set 
to zero (only for the isoparametric spatial variables, not for the physics model variables). In the future, if higher accuracy is 
required, for Bezier elements of order n ≥ 7, these higher-order derivatives could be included in the grid generators.

It is difficult to quantify accurately the effect of precision in the alignment of the 2nd grid, along flux-surfaces. In linear 
cases, where the plasma equilibrium does not change, this could be tested by using various misaligned and aligned grids. 
However, for non-linear cases, the background equilibrium typically shifts slightly from the grid, due to kinetic contributions 
to the momentum balance, which can change the Grad-Shafranov equilibrium. Of course, in cases where the equilibrium 
pressure and current profiles change, misalignment of flux-surfaces with the grid becomes even more pronounced. There-
fore, in realistic simulations, the equilibrium is never perfectly aligned to the grid. Nevertheless, having some alignment 
to flux surfaces is systematically better than the opposite. For example, using a simple polar grid for a ballooning mode 
simulation with an X-point plasma will result in numerical noise, particularly around the X-point, where the magnetic field 
is sheared, and where parallel transport plays a major role in propagating filaments in the parallel direction. Of course, this 
is not the case if the resolution of this polar grid is very high, but in practice this is numerically too costly, and flux-aligned 
grids are highly preferable. A quantification of these alignment effects on anisotropic diffusion and conduction can be found 
in [20].

Finally, initial conditions must be set on the generated grids, before time-evolution is simulated. This is done simply by 
projecting the initial condition on the node coefficients ψkl

j,m=0.

4.5. Replacing root solvers

Several root-solver routines inside JOREK cannot be used with bi-quintic (or higher-order) elements. These root-solvers 
are used to find values along the sides of elements, either to determine the spatial minima/maxima of an element, or to find 
the intersections of flux-surfaces along element edges, used for flux-aligned grid construction. For example, with bi-cubic 
elements, finding the location of a ψ-value along the side of an element simply requires the analytical formula for the 
solution of a 3rd order polynomial. Since there is no analytical solution for polynomials of order 5 or higher, locating root 
values along element sides requires converging algorithms like Newton’s method. Of course Newton’s method can only be 
used after first determining the location of minima/maxima along the side of an element; once this is achieved, Newton’s 
method can be used to locate roots between consecutive minima/maxima. Note that locating minima/maxima along the 
side of a bi-quintic element requires the zero solutions of the derivative of a given variable ψ , thus a 4th order polynomial. 
While there exists a formulation for the roots of 4th order polynomials, since this cannot be done for polynomial orders 
n ≥ 7, Newton’s method is also used to find these roots to determine the minima/maxima.

4.6. Long-integer matrix solvers

In theory, for a given simulation grid, if higher polynomial Bezier elements are used, the spatial resolution of the grid 
number of poloidal elements can be diminished, because numerical precision increases with the order of the finite-elements 
[34], as will be shown in Section-5 with convergence tests. However, in practice, particularly when addressing performance 
and convergence properties of the elements, long-integers (64 bit) may be needed for the sparse-matrix representation and 
the solvers. For large non-linear problems, the matrix sent to direct solvers like PastiX is determined by the grid size, i.e.
the number of nodes nn , the number of degrees of freedom per node nd , and the number of variables nv in the physics 
system. Indeed, since the GMRES preconditioner is obtained by solving each Fourier harmonic individually, the size of these 
matrices is independent of the number of Fourier modes. Thus, each matrix size is, at most

m × m = (2 nn nd nv)2 (96)
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where the factor 2 comes from the sine and cosine component of each Fourier mode. Of course, these are sparse matrices, 
but in practice, their number of non-zero entries will scale with the square of the number of degrees of freedom, n2

d . Since 
the number of degrees of freedom per node scales as the square of the polynomial basis order, n2, it means the size of the 
matrices will scale as n4. In order to enable simulations with large spatial resolutions and large polynomial basis orders, 
parts of the JOREK code required modification to allow for a compressed sparse row (CSR) representation of the matrices 
using long-integers. Although straight-forward in most instances of the code, this also requires MPI communications of the 
matrix to be split into batches, since MPI communication indexing is restricted to short integers.

5. Testing the JOREK code

5.1. Linear MHD tests

Three linear benchmarks are conducted for core and edge MHD instabilities in toroidal geometry, using the reduced-
MHD model [21]. The first two linear benchmarks are a low-β m = nφ = 1 internal kink mode, and a low-β m = 2, nφ = 1
tearing-mode (where m is the dominant poloidal mode, and nφ the toroidal Fourier mode). Both instabilities were studied 
in previous publications [22,35], and they are included here for completeness and clarity. The two equilibria are similar, 
but differ in safety q-profile: the internal kink mode has a q-profile in the range [0.7, 1.6], crossing q = 1 at ψn = 0.5, 
while the tearing mode has a q-profile in the range [1.7, 3.9], crossing q = 2 at ψn = 0.3. The Grad-Shafranov equilibrium 
quantities and profiles for these two cases are described in more details in [35]. Since the equilibria both have circular 
poloidal cross-sections, polar grids are used.

The first two benchmark cases are run for a scan in resistivity. The kink mode is run with resistivity alone (without 
viscosity, and without particle or thermal diffusion), while the tearing mode is run including all diffusions, with μ0 =
10−8 kg.m−1.s−1, D⊥ = 0.7 m2.s−1, and κ⊥ = 1.7 × 10−8 kg.m−1.s−1. For simplicity, the resistivity and viscosity are 
taken to be spatially constant for both cases. Note that only the toroidal mode nφ = 1 is simulated here, such that coupling 
with higher toroidal modes is not present in these linear benchmarks. Note, for a resistivity value of η = 10−6�.m, the 
corresponding Lundquist number for the kink and tearing cases is approximately S = 2.5 × 106.

The third benchmark case is an X-point plasma with peeling-ballooning instabilities. This is an artificial equilibrium 
similar to the JET tokamak. It is run using the kinetic stationary background equilibrium flows (nφ = 0), together with a 
single toroidal harmonic, which is ranged from nφ = 1 up to nφ = 20. The equilibrium characteristics, together with the 
diffusive parameters, are identical to those described in [67].

Fig.-5 shows the benchmark of the internal kink mode, the tearing mode, and the X-point peeling-ballooning modes, for 
various polynomial orders up to n = 7 with G3-continuity (and up to n = 9, G4-continuity for the internal kink). Poloidal 
cross-sections of the main Fourier mode perturbation are shown for the toroidal current jφ , together with the growth rates 
of the modes, plotted as a function of resistivity for the internal kink and tearing mode cases, and as a function of toroidal 
mode number for the peeling-ballooning mode. The linear theory in the ideal (low resistivity) regimes is also plotted, with 
a η1/3 scaling for the internal kink mode [68], and a η3/5 scaling for the tearing mode [69]. For the peeling-ballooning 
mode, the poloidal cross-section pictures the toroidal Fourier mode nφ = 17. The benchmarks are, as expected, identical in 
all cases.

5.2. Non-linear MHD tests

A simple non-linear simulation is run to test that results are well reproduced at higher polynomial orders in non-linear 
regimes. This case is an Edge-Localised-Mode in a discharge from the MAST tokamak. The particularity of this case, also 
described in details in [67], is that plasma filaments are expelled from the edge plasma, travelling at large radial valocities 
(several km/s) into the far Scrape-Off Layer (SOL). In JOREK simulations, the SOL is a near-vacuum region, which still has a 
finite background density and temperature (2% of the core values in this case, before the filaments appear), and where the 
same MHD equations are used as for the rest of the simulation domain. For this benchmark, the G1- and G2-continuous 
versions are run (i.e. with polynomial orders n = 3 and n = 5 respectively) and compared after the filaments have crossed 
the separatrix. Slightly higher spatial resolution (number of poloidal elements) is used for the G1 case than for the G2 case, 
to ensure the filaments are accurately resolved. At the outboard mid-plane, where the filaments evolve, both cases use a 
radial resolution of 2.5 mm, but the G1 cases uses a poloidal resolution of 2.5 cm, compared to 4.5 cm for the G2 case.

Fig.-6 shows a poloidal cross-section of the MAST tokamak, as the filaments travel into the SOL. A radial profile of density 
is taken across the filament, and compared between the G1 and G2 runs. Negligible differences are found between the two 
profiles, which is to be expected due to the accuracy differences between the two cases, and the resulting effect this may 
have due to the non-linear nature of the run. Beyond this early phase of the filament evolution, both simulations keep 
evolving without numerical issue, but these small differences between profiles become more pronounced at a later stage. 
Nevertheless, this benchmark is also extremely positive.
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Fig. 5. m = 1, nφ = 1 internal kink mode benchmark: (a) Poloidal cross-section of the normalised perturbation of the toroidal current jφ , and (d) comparison 
of the growth rates between various polynomial orders, ranging from n = 3 to n = 9, as a function of resistivity η. Case (a) corresponds to the G2-continuous 
point with η = 2.10−5�.m on Figure-(d). m = 2, nφ = 1 low-β tearing mode benchmark: (b) Poloidal cross-section of the normalised perturbation of the 
toroidal current jφ , and (e) comparison of the growth rates between various polynomial orders, ranging from n = 3 to n = 7, as a function of resistivity 
η. Case (b) corresponds to the G2-continuous point with η = 10−6�.m on Figure-(e). Peeling-ballooning mode benchmark with X-point equilibrium: (c) 
Poloidal cross-section of the normalised perturbation of the toroidal current jφ for the Fourier mode nφ = 17, and (f) comparison of the growth rates 
between various polynomial orders, ranging from n = 3 to n = 7, as a function of the toroidal mode number nφ . (For interpretation of the colours in the 
figure(s), the reader is referred to the web version of this article.)

5.3. G-continuity verification

Verification of G-continuity is done up to polynomial order n = 7 (G3-continuous), by comparing between subsequent 
polynomial orders of finite elements, at fixed spatial resolution (i.e. fixed element size). This is done by measuring linear 
profiles across a sharp perturbation of the toroidal current jφ .

Fig.-7 shows the comparison for 2nd and 3rd derivatives between corresponding polynomial orders for the 1D profiles. 
This result clearly shows that the discontinuity of derivatives at element boundaries (represented by jumps in the red 
profiles), disappears entirely at the relevant polynomial order. Fig.-8 shows 3D warp surfaces of the corresponding quantities 
∂R jφ and ∂2

R jφ for the G2-continuous case, revealing the smoothness of derivatives.
Note that the derivatives shown in Fig.-7 are computed exactly, or ‘strongly’. The Weak Formulation of derivatives is only 

used inside the code to evolve the equations in time. It can be used to transfer derivatives from a variable to its counterpart 
test-function [34]; but in the case of Fig.-7, these are the physical quantities.

5.4. Convergence tests

One of the main interests of using higher-order polynomials with finite elements is that the local numerical errors di-
minish significantly. Convergence of growth rates as a function of spatial grid resolution is tested for a standard ballooning 
benchmark, the so-called CBM18 ballooning case, also described in details in [35]. The grid resolution is scanned homoge-
neously in the radial and poloidal directions, scanning from (n f lux, ntht) = (54, 180) to (267, 890), where n f lux and ntht are 
the number of radial (flux surfaces) and poloidal (theta) grid-points, respectively, both of which are equidistant in real-space 
for this case.
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Fig. 6. (a) Poloidal cross-section picturing the particle density ne during an Edge-Localised-Mode (ELM) in the MAST tokamak, during which plasma filaments 
are expelled at several km/s into the Scrape-Off Layer. (b) Particle density profiles across a filament while it is moving away from the plasma, with a 
comparison between the G1-continuous (n = 3) and G2-continuous (n = 5) finite elements. These radial profiles are taken along the white horizontal line 
pictured in (a).

Fig. 7. (a) Comparison of second derivatives across a sharp perturbation of the toroidal current jφ , between the G1-continuous (n = 3) and G2-continuous 
(n = 5) finite elements. (b) Comparison of third derivatives across a sharp perturbation of the current j, between the G2-continuous (n = 5) and G3-
continuous (n = 7) finite elements. Note that all cases are done at equal spatial resolution (i.e. elements are the same size in all cases). The plots reveal the 
discontinuity of the current derivatives (red curves), which becomes smooth at the relevant G-continuous polynomial order (blue curves).

Fig. 8. 3D warp surfaces of ∂R jφ (top) and ∂2
R jφ (bottom).

With finite elements, any smooth function u differs from its numerical representation ũ by ||u − ũ|| ≤ Chp ||u(p)||, for 
some constant C , where h is the element size, p = n + 1 is the polynomial order of the finite elements, and u(p) is the 
p-th derivative of the function [34]. Thus, assuming that the analytical solution of the system has a bounded derivative u(p) , 
the error should scale as E ∼ hp . In cases where the non-linear MHD system does not possess a finite u(p) , convergence 
would occur at a lower rate. Here, (√n f luxntht)

−1 is used as an approximation of the element size h. Note that these tests 
evaluate the growth rates of toroidal modes, which are obtained by integrating the mode energies over the domain (i.e. over 
the elements), hence adding another factor (√n f luxntht)

−1 to the error estimate. Thus, the error of the growth rates should 
scale with the (p + 1) power of the spatial resolution, i.e. (

√
n f luxntht)

−5 for bi-cubic elements, (√n f luxntht)
−7 for bi-quintic 

elements, etc.
Fig.-9b shows the convergence of the growth rate error, as a function of spatial resolution. The scaling of this convergence 

is, as expected, dependent on the corresponding p-refinement level of the finite-elements, as long as the resolution is above 
a certain minimum (vertical dashed line). The converged growth rates, used to evaluate the errors in Fig.-9, are obtained 
using the highest resolution cases available. A least-square fit is done for the expected convergence, such that the converged 
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Fig. 9. (a) Poloidal cross section of the ballooning perturbations (mode number nφ = 20) of the electron temperature Te for the CBM18 test-case used to 
verify convergence of the error with respect to resolution. (b) Convergence of the error on the growth rates, for the CBM18 test-case with the ballooning 
mode number nφ = 20, as a function of spatial grid resolution (using log-scales for both axes). The error converges according to the estimate E ∼ hp [34].

growth rate is estimated at “infinite” resolution. Note that although separate fits are done for each polynomial order, the 
differences of the converged growth rates, between the G1, G2 and G3 cases, are of the order of 10−7, which is below the 
lowest error obtained. Also, scans in the amplitude of the time-step were performed to ensure that an accurate (converged) 
time-resolution was used for the runs.

This CBM18 test case is a representative example of both the advantages and the limitations of higher-order finite-
elements. As can be seen in Fig.-9b, below a certain poloidal resolution, the fine ballooning structure of Fig.-9a cannot be 
resolved properly, and the error starts deviating from the scaling. Both high radial and poloidal resolution is required to re-
solve the ballooning filaments, and this requirement increases with the toroidal mode number nφ . Depending on the physics 
addressed, higher-order finite-elements may not always be the preferred choice. For example if addressing turbulence, which 
requires mode numbers upwards of nφ = 40, the high minimal resolution required may become computationally too expen-
sive when combined with high-order polynomial elements. Users need to find the balance between the spatial scale of 
non-linear structures to be resolved for a given instability, and the computational cost of simulations. The highest resolution 
cases required 240 nodes (almost 12,000 cores) on the CINECA-Marconi cluster, due to the memory requirement for solving 
the larger sparse matrices at higher polynomial order (240 nodes on CINECA-Marconi corresponds to approximately 47TB of 
memory). Efforts are ongoing in the JOREK team to reduce memory consumption [63], although this is a common feature 
of fully-implicit schemes. The next subsection provides a more detailed evaluation of the computational gains versus accu-
racy. The highest resolutions used here were (n f lux, ntht) = (267, 890) for the G1-elements, (n f lux, ntht) = (120, 400) for the 
G2-elements, and (n f lux, ntht) = (66, 221) for the G3 elements.

In principle, the hp convergence property of the growth rates should be independent from the level of G-continuity. 
However since G-continuity is ensured by the geometrical construction of the finite-elements, a voluntarily misalignment of 
the control points between elements would artificially enforce discontinuity, due to the nodal formulation and the resulting 
shared degrees-of-freedom. Since this situation is not of practical interest for JOREK applications, the convergence tests were 
not conducted with voluntarily discontinuous elements.

5.5. Performance tests

Fig.-10a shows the computation time as a function of the polynomial order of the finite elements, up to n = 13 (G6-
continuous). As expected, the computation time scales as the square of the number of degrees of freedom per node (because 
the matrix dimension scales as ndegrees in both directions), hence a 4th order scaling with the order of the polynomial basis. 
Fig.-10b shows the computation time as a function of the error on the growth-rate, corresponding to the CBM18 test-case 
shown in Fig.-9. Higher accuracy requires higher computational cost, as expected. However, the important point to notice 
here is that, in order to achieve low error levels (below 10−3), the higher-order finite-element cases become systematically 
more efficient, in some cases by an order of magnitude.

In Fig.-10b, for the G1-cases, there is an almost linear dependence between the computation time and the error (at 
least above 10−4). This can be explained by estimating that the computation time scales at least as fast as the total size 
of the matrix of the final linear system, which scales as the square of the number of nodes in the poloidal grid, such that 
Tcpu ∼ n2

nodes . For a polar grid, the number of nodes is nnodes ≈ n f luxntht . Hence, since the estimate for the element size, as 
given in Fig.-9b, is h ≈ (

√
n f luxntht)

−1, it follows that the computation time scales as Tcpu ∼ h−4. Now, for cubic elements, 
the error bound from [34] is E ∼ h4, such that the computation time should scale at least linearly with the error level, 
Tcpu ∼ E−1. Of course, since the solving efficiency of sparse linear system does not scale perfectly, this dependency clearly 
breaks at low error levels (i.e. large matrix sizes).

Note that an additional modifications, left for future development, could further reduce the cost of higher-order finite 
elements. Firstly, the reduced-MHD model, frequently used in JOREK, uses separate equations for auxiliary variables wφ and 
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Fig. 10. (a) Scaling of the computation time, at fixed spatial grid resolution, as function of the polynomial basis, up to n = 13 (G6-continuous). The dashed 
line shows the scaling of n4, which matches the calculations as expected. (b) Computation cost of the convergence test case from Fig.-9, as a function of 
error. This clearly shows that, between G1- and G2- cases, at equivalent accuracy, the G2 runs are computationally cheaper.

jφ . The reason for this is that these variables are themselves 2nd order derivatives of other variables, such that solving these 
separately reduces numerical errors in G1-continuous elements. With higher G-continuity, these could be removed, reducing 
the number of variables from 7 to 5, which would significantly reduce the size of the problem. Secondly, using localised 
p-refinement would also result in lower computational costs, while keeping the desired accuracy where it is needed (for 
example in the region where ballooning structures are dominant in Fig.-9a). These modifications would however require 
significant development and testing, which is beyond the scope of this paper and left for future work. In particular, localised 
p-refinement would require a far more elaborate nodal formulation, to satisfy the conditions proposed by Aumann & Bentz 
[48].

5.6. Advanced simulation demonstration

Finally, to demonstrate the practical usability of the new finite-element method implemented in JOREK, a non-linear 
simulation is run, with multiple Fourier mode numbers nφ = (1, 2, 3, ..., 8), for an Edge-Localised-Mode in ITER. This is done 
for a 15MA equilibrium, with a pedestal electron temperature of T ped

e = 8 keV. An advanced grid geometry is used, aligned 
to the first-wall of ITER, including the divertor dome geometry below the X-point, based on the grid-patches method 
developed in [66]. Note that the exact geometry of the ITER divertor dome is 3-dimensional and far more complex in 
reality [70], but demonstrating the feasibility of such an isolated dome in JOREK simulations is an important aspect of 
current challenges, particularly for detachment studies [71], where the dome can play a major role for neutral particles 
dynamics. The simulation is run with the reduced-MHD model [21,72], using conservative physical diffusivity coefficients, 
since its purpose is simply to demonstrate numerical feasibility of violent MHD non-linear instabilities. The resistivity is 
taken to be 300 times the neoclassical resistivity. More advanced studies of ITER plasmas, at experimental resistivity and 
with diamagnetic effects, are the current focus of other experts in the JOREK team, and are well beyond the scope and 
purpose of this paper.

Fig.-11 shows the density and electron temperature as ELM filaments are expelled from the plasma. Fine, poloidally 
well-resolved filamentary structures can be observed reaching the divertor. The finite-element edges are also pictured, in 
the divertor and X-point region, in Fig.-11b. The magnetic energy of the toroidal modes is pictured in Fig.-12a, where the 
ELM starts with the toroidal mode number nφ = 8, followed by coupling with lower harmonics, as is typical of non-linear 
ELM dynamics [73]. However, truncating the number of toroidal modes at nφ = 8 can have important consequences for the 
dynamics of MHD instabilities. In fact, as suggested by Aydemir et al. [74], the toroidal resolution should be about one 
order of magnitude higher than the most unstable mode number. Although JOREK cannot yet handle all toroidal modes 
from nφ = 1 to nφ = 80, another simulation was run with octant periodicity, including the modes nφ = 8, 16, 24, ..., 64. 
This simulation is run with diamagnetic effects [72], which stabilises the higher modes, such that nφ = 8 is the dominant 
mode number in the linear phase. The evolution of the magnetic energy of all toroidal modes is shown in Fig.-12b. Indeed, 
while the dominant mode is nφ = 8 throughout the simulation, the modes nφ = 16 and nφ = 24 have a non-negligible 
contribution. At the peak of the MHD activity, around t = 0.265ms in Fig.-12b, the contribution of higher mode numbers is 
much weaker, and it rapidly decreases as the mode number increases: the modes nφ = 32 and nφ = 40 are more than one 
order of magnitude lower than the nφ = 8 amplitude, while the contribution from nφ = 48, 56, 64 are negligible, two orders 
of magnitude below the amplitude of nφ = 8. Nevertheless, moderate non-linear coupling with higher modes does occurs 
later, after the peak of the filament activity. These simulations should provide sufficient confidence to the JOREK community 
that the high-order finite-element method presented here, and its implementation in the code, has the numerical robustness 
to handle advanced future studies of tokamak MHD, at least as well as the previous G1 implementation. Note that improving 
the computational efficiency and scalability of the code, in order to enable higher toroidal resolution, is a continuing effort 
and one of the main priorities of the JOREK developers community.

Beyond the demonstration of the feasibility of advanced simulations like the one portrayed in Fig.-11 and Fig.-12, some 
qualitative comparisons were performed between G1- and G2-continuous grids for under-resolved cases. The same ITER 
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Fig. 11. ITER simulation with G2-continuous elements, with a wall-aligned grid, including the divertor Dome below the X-point. (a) Poloidal cross-section 
of the density, showing filaments travelling radially in the Scrape-Off Layer. (b) Zoom on the divertor region, showing thin stripes of temperature reaching 
the divertor target, due to heat conduction from upstream filaments along magnetic field-lines.

Fig. 12. (a) Magnetic energies of the ballooning modes as a function of time, for the simulation shown in Fig.-11, where nφ = 8 dominates the early phase 
of the ELM, followed by non-linear coupling with lower modes in the later phase. (b) Magnetic energies of the ballooning modes for the simulation with 
nφ = 8, 16, 24, ..., 64 including diamagnetic effects, where the modes nφ = 32 and nφ = 40 have a clear contribution to the dominant nφ = 8 mode number.

simulation of an ELM with nφ = (1, 2, 3, ..., 8) was conducted with more challenging visco-resistive and diffusive param-
eters, and with a poloidal grid resolution which results in the same computational cost for both the G1 and G2 cases 
(approximately a factor 2.5 in both the radial and poloidal directions). One of the most typical numerical issues encoun-
tered in practice with the JOREK code is when the ELM filament dynamics is very violent, creating areas of low plasma 
density and temperature. In the worst cases, the positivity of density and temperature is violated, which in turn leads to 
further numerical issues: the current density and toroidal vorticity become numerically noisy, with fine-scale oscillations 
below the size of the elements, which may be attributed to Gibbs oscillations. These oscillations may grow exponentially 
if untreated, thus restricting the simulation. For the simulation shown in Fig.-11 and Fig.-12, in order to avoid negative 
density, a conservatively small time-step is used (approximately 1/20th of the Alfven time), and the perpendicular diffusion 
D⊥ is increased locally by a factor 100 wherever the density comes below 0.1% of the core density (7 × 1016 m−3 in this 
case). This allows the density to remain approximately above 0.01% of the core density during the peak of the MHD activity.

All parameters are identical in both simulations, using a conservatively small time-step size. With numerical diffusion, 
the level of numerical noise in the region of the filaments can be reduced, allowing the simulation to run through without 
a numerical blow-up of the Gibbs oscillations (which typically leads to the failure of the GMRES convergence). It could be 
expected that Gibbs oscillations will change as the order of the finite-element increases, leading to even finer structure, 
but this is not what is observed in these case. In fact, as the numerical diffusion was progressively scanned, either the G1 
and G2 cases both failed, or they both succeeded. Individual scans were performed for numerical diffusion in the continuity 
equation, the poloidal momentum equation, and the parallel momentum equation, but in all cases the conclusion was the 
same: with identical diffusive parameters, either the G1 and G2 cases both failed, or they both succeeded. This suggests 
that, for non-linear cases, G2 elements are practically as reliable as G1 elements. Nevertheless, as could be expected from 
Fig.-10b, there may be regimes, at higher resolutions, where this could be different, but demonstrating this particular result 
would require a large amount of computational resources, since the non-linear case would need to be run several times, 
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while scanning the hyper-diffusive parameters, and for several grid sizes of higher resolutions which are computationally 
even more expensive.

Note that numerical stabilisation methods, like the Taylor-Galerkin method and the Variational Multi-Scale method [75], 
are also available in JOREK to handle numerical issues like Gibbs oscillations. However these methods were not used in this 
study, and would need to be addressed in future works.

6. Conclusion

6.1. Summary

This paper presents the significant development and generalisation of the finite-element method used in the JOREK code. 
A generalised formulation was developed for a nodal representation of Bezier elements, which ensures that G-continuity of 
order (n − 1)/2 is respected, where n is the order of the polynomial basis of the Bezier elements. Rigorous proof was 
provided to show that the definition of our nodal formulation ensures G-continuity. Some details about the key aspects of 
the implementation into the code were provided, followed by a series of tests and benchmark studies. Beyond the fact that 
the G-continuity of the method is demonstrated numerically, and that all benchmark tests provide identical results to the 
previous JOREK version, one of the key achievements of this study is that, at equivalent numerical precision, having higher-
order finite-elements can be computationally cheaper. As such, it is expected that the G2-continuous version of the JOREK 
code, possibly the G3-version, could become routinely used by JOREK users in their studies of tokamak MHD instabilities in 
the future.

6.2. Further work

There are, nevertheless, several areas where improvements can be brought to the JOREK code, following the implemen-
tation of this new method.

The first aspect is that a more generic definition of continuity, as in [52,53], could be considered at least for the G1- and 
G2-continuous versions. This is far more elaborate than the mathematical methods presented here, and would require sig-
nificant code developments. However, there is an invaluable advantage to such generic methods, because they allow sharp 
angles between elements at a given node, which would enable more advanced element constructions, with arbitrary num-
bers of elements meeting at a given node, and the construction of triangular element sub-structures. This great flexibility 
could prove beneficial in the context of arbitrary grid construction, particularly in the context of alignment to arbitrary wall 
structures like in Fig.-11.

The second point that could be improved, and of significant impact, would be the elimination of the two equations 
for the auxiliary variables wφ and jφ in the reduced-MHD model. These equations are simply the identity definitions of 
wφ = ∇2� and jφ = ∇2ψ , where � and ψ are the electric and magnetic potentials respectively. These identities are time-
independent, but they are included as separate equations in the model because it significantly reduces the level of numerical 
noise in the simulations, and improves the code’s practical reliability. If higher-order continuity is available, these equations 
could be removed entirely, in principle, such that 3rd and 4th order derivatives of � and ψ would then be directly used in 
the momentum and induction equations (as opposed to 1st and 2nd derivatives of wφ and jφ at present). This would reduce 
the number of equations/variables from 7 to 5 for the standard reduced-MHD model, which would significantly reduce the 
overall cost of simulation.

The third aspect concerns boundary conditions for Mach-1 Sheath conditions for boundaries with incident magnetic field 
lines. At present, the Sheath boundary conditions are constrained with the weak-formulation, such that no assumption is 
made for higher-order derivatives, but the Mach-1 boundary conditions are enforced by a penalisation method projected 
onto specific node degrees of freedom. With higher-order finite-elements, this is done for first-order derivatives, but not 2nd 
or higher derivative degrees of freedom. It would be highly desirable to implement this feature in the code, but numerical 
difficulties were found in our initial attempts to implement this, and so this will require further investigation. However, 
the current version of the code, with Mach-1 boundary conditions applied to the values and first derivatives of the plasma 
velocity, is numerically very reliable and sufficient for production studies. It is, of course, at least as precise as the previous 
version.

The fourth area, where additional development could bring significant flexibility, is the possibility of having so-called 
“localised p-refinement”. However, as demonstrated by Aumann & Bentz’s work [48], ensuring continuity (at the lowest 
order of two adjascent elements) requires a far more elaborate formulation. In particular, if two patches meet with dif-
ferent p-refinements, their control points at the common boundary do not match, which is assumed in our case. Hence, 
for localised p-refinement, our formulation would need to be generalised to Aumann & Bentz’s formula (18), but in nodal 
form and in 2-directions (for 4 elements). Nevertheless, p-refinement is an appealing capability to consider for future de-
velopments, and one that is already used in many other state-of-the-art modelling tools like Nektar++, Firedrake and MFEM 
[40,41,44,47,76,77].

Similarly, an interesting generalisation of the finite-element formulation in the JOREK code would be to allow for uncon-
strained finite-elements, where the continuity is not imposed. At present, the formulation inherently includes continuity, 
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which has the advantage of reducing the number of degrees-of-freedom, but the disadvantage of being less flexible. Remov-
ing this automatic constraint may lead to a computationally more costly formulation, but it could have other advantages, 
and the flexibility to impose continuity or not would certainly be of numerical interest. However, this would require a 
reformulation of the finite-element numerical structure inside the code.

Additionally, as mentioned earlier, finding an alternative proof to derive the G-continuity of our formulation (45), by 
providing a bridge to Aumann & Bentz’s condition (18), would be mathematically interesting.

In terms of the mathematical method itself, the existence of such a generalised method for triangular Bezier elements 
would need to be demonstrated. It may also be of interest to address more generic finite elements than Bezier, like B-splines, 
and using basis functions other than the Bernstein polynomials.

Finally, now that this new method is available in the JOREK code, extensive studies and routine usability still remains to 
be demonstrated by the JOREK team, hopefully leading to cheaper, more precise simulations in the future.
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