125 research outputs found
Optimization of the fixed-flexion knee radiograph
SummaryPurposeTo develop a user-friendly method of achieving optimal radiographs for measurement of joint space width of the knee with minimal radiation exposure. In order to accomplish this the X-ray technologist must (1) be able to identify the anterior and posterior rims of the tibial plateau at a variety of X-ray head angles and (2) be able to choose the direction to adjust the head angle to get a better view based on the criteria for acceptable radiographs.MethodsWe have developed a training manual and materials to instruct investigators and radiology technologists in a method that uses a commercially available Plexiglas positioning frame (Synaflexer™) and standard X-ray equipment to achieve optimal X-rays with regard to tibial plateau alignment of the knee. This should be accomplished with four or fewer radiographs.ResultsOptimized radiographs for joint space width measurements are achieved without the need for fluoroscopy or foot maps.ConclusionsThis method is readily understood and instituted by radiology technologists in the field
ASSESSMENT OF URINARY HYDROXYPYRIDINIUM CROSS-LINKS MEASUREMENT IN OSTEOARTHRITIS
The aim of this study is to re-evaluate urinary collagen cross-links, previously proposed as markers of osteoarthritis (OA). The urinary excretion of collagen cross-links, pyridinoline (PYD) and deoxypyridinoline (DPD), was measured using high-performance liquid chromatography (HPLC) in 114 patients with OA, 19 patients with rheumatoid arthritis (RA) and 40 healthy subjects. An increase in PYD and DPD, expressed per millimole of creatinine, was confirmed in RA. However, PYD and DPD in patients with hip OA, knee OA and polyOA were similar, and did not differ from controls. In patients with radiographic end-stage OA, PYD and DPD were significantly higher than in patients with an early OA, but not significantly higher than in controls. The PYD/DPD ratio did not vary with the OA stage. Thus, urinary collagen cross-links are not elevated in OA, but could reflect bone sclerosis and/or erosion in late O
Clusters of biochemical markers are associated with radiographic subtypes of osteoarthritis (OA) in subject with familial OA at multiple sites. The GARP study
SummaryObjectiveTo assess the relationship of biochemical markers and radiographic signs of osteoarthritis (ROA) in the subjects with symptomatic osteoarthritis (OA) at multiple sites of the Genetics osteoARthritis and Progression (GARP) study.MethodsWe have measured eight biochemical markers, representing tissue turnover of cartilage, bone, synovium, and inflammation. ROA was assessed in the knees, hips, hands, vertebral facet joints and spinal disc degeneration (DD) by using the Kellgren score. A proportionate score was subsequently made for each joint location based on the number of joints with ROA. Principal component and linear mixed model analyses were applied to analyze the data.ResultsThree different clusters of markers were identified that may reflect different pathophysiological processes of OA. The first component appeared to be reflected by structural markers of cartilage and bone turnover and associated especially in subjects with hip ROA. The second component was reflected by a marker of inflammation and was associated with knee ROA, high Western Ontario and McMaster Universities (WOMAC) scores and body mass index (BMI). The third component included markers of cartilage turnover and was associated with ROA at hands, spine as well as age. High familial aggregation was observed for serum cartilage oligomeric matrix protein (S-COMP) (70%) and serum N-propeptide of collagen type IIA (S-PIIANP) (62%).ConclusionUsing a large well-characterized study and eight biochemical markers, we were able to observe three components that may reflect different molecular mechanisms (bone, cartilage, synovium turnover and inflammation). Our data suggested that these components contribute differently to ROA at different joint sites
Alignment of the medial tibial plateau affects the rate of joint space narrowing in the osteoarthritic knee
SummaryObjectiveTo determine, in serial fixed-flexion (FF) radiographs of subjects with knee osteoarthritis (KOA), the importance of, and basis for, the effect of alignment of the medial tibial plateau (MTP), as determined by the inter-margin distance (IMD), on joint space narrowing (JSN).MethodsBaseline and 12-month X-rays of 590 knees with Kellgren and Lawrence grade (KLG) 2/3 OA from the public-release dataset of the Osteoarthritis Initiative (OAI) were assigned to subgroups based upon IMD at baseline (IMDBL) and the difference between IMDBL and IMD12mos. Relationships of JSN to IMDBL and to the difference between IMDBL and IMD12mos were evaluated.ResultsIn all 590 knees, mean JSN was 0.13±0.51mm (P<0.0001) and MTP alignment and replication of IMDBL in the 12-month film were, in general, poor. JSN was significantly (P=0.012) more rapid in Subgroup A (IMD≤1.70mm at both time points) than in Subgroup B (both IMDs>1.70mm): 0.15±0.43; 0.08±0.47. Within Subgroup B we identified a subset, Subgroup B1, in which, although alignment was poor at both time points, the large IMDBL was, by chance, highly reproduced by IMD12mos (difference between the two IMDs=0.01±0.27mm, NS). JSN in Subgroup B1 was 0.06±0.41mm and did not differ from that in other knees of Subgroup B (P=0.87). The standardized response mean (SRM) in all 590 knees and Subgroups A, B and B1 was 0.25, 0.34, 0.17 and 0.06, respectively. Independent of IMDBL, JSN correlated significantly with the difference between the IMDs in the two radiographs (r=0.17, P=0.0001).ConclusionSkewed MTP alignment in serial films and poor replication of IMDBL in the follow-up exam affect JSN measurement. The magnitude of change in joint space width (JSW) related to the poor quality of alignment that is common with the FF view jeopardizes accurate evaluation of JSN
Characterization of nitrotyrosine as a biomarker for arthritis and joint injury
Objectives: To characterize the utility of nitrotyrosine (NT) as a biomarker for arthritis and joint injury. Design: Synovial fluid, plasma, and urine from patients diagnosed with osteoarthritis (OA), rheumatoid arthritis (RA), anterior cruciate ligament (ACL) injury, meniscus injury and pseudogout, and knee-healthy volunteers were analyzed for concentrations of NT, nitrate and nitrite (NOx), matrix metalloproteinase (MMP)-3, MMP-1, MMP-9, more than 40 chemokines and cytokines. Results: In OA, plasma and synovial fluid NT were increased versus healthy volunteers. Synovial fluid to plasma NT ratios were elevated in OA patients. Synovial fluid from patients with ACL and meniscus injury and pseudogout had increased levels of NT (P < 0.001). In these samples, NT levels significantly correlated with ARGS-aggrecan neoepitope generated by aggrecanase cleavage of aggrecan (P <= 0.001), cross-linked C-telopeptides of type II collagen (P < 0.001), MMP-1 (P = 0.008), and MMP-3 (P <= 0.001). In RA, plasma NT decreased following 6 months of anti-tumor necrosis factor (TNF) treatment. For every 1.1% change in log(10) NT, there was a 1.0% change in the log(10) disease activity scores (DAS28-3 CRP). Both predicted and observed DAS28-3 CRP showed a robust linear relationship with NT. RA plasma NT positively correlated with CRP, MMP-3 and interferon gamma-induced protein 10. Conclusions: NT may serve as a useful biomarker for arthritis and joint injury. In RA, NT is highly correlated with several biomarkers and clinical correlates of disease activity and responds to anti-TNF therapy. (C) 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved
Proteoglycan Breakdown of Meniscal Explants Following Dynamic Compression Using a Novel Bioreactor
Motivated by our interest in examining meniscal mechanotransduction processes, we report on the validation of a new tissue engineering bioreactor. This paper describes the design and performance capabilities of a tissue engineering bioreactor for cyclic compression of meniscal explants. We showed that the system maintains a tissue culture environment equivalent to that provided by conventional incubators and that its strain output was uniform and reproducible. The system incorporates a linear actuator and load cell aligned together in a frame that is contained within an incubator and allows for large loads and small displacements. A plunger with six Teflon-filled Delrin compression rods is attached to the actuator compressing up to six tissue explants simultaneously and with even pressure. The bioreactor system was used to study proteoglycan (PG) breakdown in porcine meniscal explants following various input loading tests (0–20% strain, 0–0.1 MPa). The greatest PG breakdown was measured following 20% compressive strain. These strain and stress levels have been shown to correspond to partial meniscectomy. Thus, these data suggest that removing 30–60% of meniscal tissue will result in the breakdown of meniscal tissue proteoglycans
In vivo measures of cartilage deformation: patterns in healthy and osteoarthritic female knees using 3T MR imaging
ObjectiveTo explore and to compare the magnitude and spatial pattern of in vivo femorotibial cartilage deformation in healthy and in osteoarthritic (OA) knees.MethodsOne knee each in 30 women (age: 55 ± 6 years; BMI: 28 ± 2.4 kg/m(2); 11 healthy and 19 with radiographic femorotibial OA) was examined at 3Tesla using a coronal fat-suppressed gradient echo SPGR sequence. Regional and subregional femorotibial cartilage thickness was determined under unloaded and loaded conditions, with 50% body weight being applied to the knee in 20° knee flexion during imaging.ResultsCartilage became significantly (p < 0.05) thinner during loading in the medial tibia (-2.7%), the weight-bearing medial femur (-4.1%) and in the lateral tibia (-1.8%), but not in the lateral femur (+0.1%). The magnitude of deformation in the medial tibia and femur tended to be greater in osteoarthritic knees than in healthy knees. The subregional pattern of cartilage deformation was similar for the different stages of radiographic OA.ConclusionOsteoarthritic cartilage tended to display greater deformation upon loading than healthy cartilage, suggesting that knee OA affects the mechanical properties of cartilage. The pattern of in vivo deformation indicated that cartilage loss in OA progression is mechanically driven
- …