70 research outputs found

    Succinate accumulation drives ischaemia-reperfusion injury during organ transplantation.

    Get PDF
    During heart transplantation, storage in cold preservation solution is thought to protect the organ by slowing metabolism; by providing osmotic support; and by minimising ischaemia-reperfusion (IR) injury upon transplantation into the recipient1,2. Despite its widespread use our understanding of the metabolic changes prevented by cold storage and how warm ischaemia leads to damage is surprisingly poor. Here, we compare the metabolic changes during warm ischaemia (WI) and cold ischaemia (CI) in hearts from mouse, pig, and human. We identify common metabolic alterations during WI and those affected by CI, thereby elucidating mechanisms underlying the benefits of CI, and how WI causes damage. Succinate accumulation is a major feature within ischaemic hearts across species, and CI slows succinate generation, thereby reducing tissue damage upon reperfusion caused by the production of mitochondrial reactive oxygen species (ROS)3,4. Importantly, the inevitable periods of WI during organ procurement lead to the accumulation of damaging levels of succinate during transplantation, despite cooling organs as rapidly as possible. This damage is ameliorated by metabolic inhibitors that prevent succinate accumulation and oxidation. Our findings suggest how WI and CI contribute to transplant outcome and indicate new therapies for improving the quality of transplanted organs.Work in the M.P.M. laboratory was supported by the Medical Research Council UK (MC_U105663142) and by a Wellcome Trust Investigator award (110159/Z/15/Z) to M.P.M. Work in the C.F. laboratory was supported by the Medical Research Council (MRC_MC_UU_12022/6). Work in the K.S.P. laboratory was supported by the Medical Research Council UK. Work in the RCH lab laboratory was supported by a Wellcome Trust Investigator award (110158/Z/15/Z) and a PhD studentship for .L.P from the University of Glasgow. A.V.G. was supported by a PhD studentship funded by the National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Organ Donation and Transplantation at the University of Cambridge in collaboration with Newcastle University and in partnership with NHS Blood and Transplant (NHSBT)

    Cross-tissue immune cell analysis reveals tissue-specific adaptations and clonal architecture in humans

    Get PDF
    Despite their crucial role in health and disease, our knowledge of immune cells within human tissues remains limited. Here, we surveyed the immune compartment of 15 tissues of six deceased adult donors by single-cell RNA sequencing and paired VDJ sequencing. To systematically resolve immune cell heterogeneity across tissues, we developed CellTypist, a machine learning tool for rapid and precise cell type annotation. Using this approach, combined with detailed curation, we determined the tissue distribution of 45 finely phenotyped immune cell types and states, revealing hitherto unappreciated tissue-specific features and clonal architecture of T and B cells. In summary, our multi-tissue approach lays the foundation for identifying highly resolved immune cell types by leveraging a common reference dataset, tissue-integrated expression analysis and antigen receptor sequencing. One Sentence Summary We provide an immune cell atlas, including antigen receptor repertoire profiling, across lymphoid and non-lymphoid human tissues

    Cells and gene expression programs in the adult human heart

    Get PDF
    Cardiovascular disease is the leading cause of death worldwide. Advanced insights into disease mechanisms and strategies to improve therapeutic opportunities require deeper understanding of the molecular processes of the normal heart. Knowledge of the full repertoire of cardiac cells and their gene expression profiles is a fundamental first step in this endeavor. Here, using large-scale single cell and nuclei transcriptomic profiling together with state-of-the-art analytical techniques, we characterise the adult human heart cellular landscape covering six anatomical cardiac regions (left and right atria and ventricles, apex and interventricular septum). Our results highlight the cellular heterogeneity of cardiomyocytes, pericytes and fibroblasts, revealing distinct subsets in the atria and ventricles indicative of diverse developmental origins and specialized properties. Further we define the complexity of the cardiac vascular network which includes clusters of arterial, capillary, venous, lymphatic endothelial cells and an atrial-enriched population. By comparing cardiac cells to skeletal muscle and kidney, we identify cardiac tissue resident macrophage subsets with transcriptional signatures indicative of both inflammatory and reparative phenotypes. Further, inference of cell-cell interactions highlight a macrophage-fibroblast-cardiomyocyte network that differs between atria and ventricles, and compared to skeletal muscle. We expect this reference human cardiac cell atlas to advance mechanistic studies of heart homeostasis and disease

    Cells of the human intestinal tract mapped across space and time

    Get PDF
    The cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung’s disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease

    Targeting succinate dehydrogenase with malonate ester prodrugs decreases renal ischemia reperfusion injury

    Get PDF
    Renal ischemia reperfusion (IR) injury leads to significant patient morbidity and mortality, and its amelioration is an urgent unmet clinical need. Succinate accumulates during ischemia and its oxidation by the mitochondrial enzyme succinate dehydrogenase (SDH) drives the ROS production that underlies IR injury. Consequently, compounds that inhibit SDH may have therapeutic potential against renal IR injury. Among these, the competitive SDH inhibitor malonate, administered as a cell-permeable malonate ester prodrug, has shown promise in models of cardiac IR injury, but the efficacy of malonate ester prodrugs against renal IR injury have not been investigated. Here we show that succinate accumulates during ischemia in mouse, pig and human models of renal IR injury, and that its rapid oxidation by SDH upon reperfusion drives IR injury. We then show that the malonate ester prodrug, dimethyl malonate (DMM), can ameliorate renal IR injury when administered at reperfusion but not prior to ischemia in the mouse. Finally, we show that another malonate ester prodrug, diacetoxymethyl malonate (MAM), is more potent than DMM because of its faster esterase hydrolysis. Our data show that the mitochondrial mechanisms of renal IR injury are conserved in the mouse, pig and human and that inhibition of SDH by ‘tuned’ malonate ester prodrugs, such as MAM, is a promising therapeutic strategy in the treatment of clinical renal IR injury

    Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids

    Get PDF
    Treatment of common bile duct disorders such as biliary atresia or ischaemic strictures is limited to liver transplantation or hepatojejunostomy due to the lack of suitable tissue for surgical reconstruction. Here, we report a novel method for the isolation and propagation of human cholangiocytes from the extrahepatic biliary tree and we explore the potential of bioengineered biliary tissue consisting of these extrahepatic cholangiocyte organoids (ECOs) and biodegradable scaffolds for transplantation and biliary reconstruction in vivo. ECOs closely correlate with primary cholangiocytes in terms of transcriptomic profile and functional properties (ALP, GGT). Following transplantation in immunocompromised mice ECOs self-organize into tubular structures expressing biliary markers (CK7). When seeded on biodegradable scaffolds, ECOs form tissue-like structures retaining biliary marker expression (CK7) and function (ALP, GGT). This bioengineered tissue can reconstruct the wall of the biliary tree (gallbladder) and rescue and extrahepatic biliary injury mouse model following transplantation. Furthermore, it can be fashioned into bioengineered ducts and replace the native common bile duct of immunocompromised mice, with no evidence of cholestasis or lumen occlusion up to one month after reconstruction. In conclusion, ECOs can successfully reconstruct the biliary tree following transplantation, providing proof-of-principle for organ regeneration using human primary cells expanded in vitro

    Cholangiocyte organoids can repair bile ducts after transplantation in the human liver.

    Get PDF
    Organoid technology holds great promise for regenerative medicine but has not yet been applied to humans. We address this challenge using cholangiocyte organoids in the context of cholangiopathies, which represent a key reason for liver transplantation. Using single-cell RNA sequencing, we show that primary human cholangiocytes display transcriptional diversity that is lost in organoid culture. However, cholangiocyte organoids remain plastic and resume their in vivo signatures when transplanted back in the biliary tree. We then utilize a model of cell engraftment in human livers undergoing ex vivo normothermic perfusion to demonstrate that this property allows extrahepatic organoids to repair human intrahepatic ducts after transplantation. Our results provide proof of principle that cholangiocyte organoids can be used to repair human biliary epithelium
    • …
    corecore