49,897 research outputs found

    No periodicity revealed for an "eclipsing" ultraluminous supersoft X-ray source in M81

    Full text link
    Luminous supersoft X-ray sources found in the Milky Way and Magellanic Clouds are likely white dwarfs that steadily or cyclically burn accreted matter on their surface, which are promising type Ia supernova progenitors. Observations of distant galaxies with Chandra and XMM-Newton have revealed supersoft sources that are generally hotter and more luminous, including some ultraluminous supersoft sources (ULSs) that are possibly intermediate mass black holes of a few thousand solar masses. In this paper we report our X-ray spectral and timing analysis for M81-ULS1, an ultraluminous supersoft source in the nearby spiral galaxy M81. M81-ULS1 has been persistently supersoft in 17 Chandra ACIS observations spanning six years, and its spectrum can be described by either a kTbb70kT_{bb}\approx70 eV blackbody for a 1.2M\sim1.2M_\odot white dwarf, or a kTin80kT_{in} \approx 80 eV multicolor accretion disk for a 103M\gtrsim10^3M_\odot intermediate mass black hole. In two observations, the light curves exhibited dramatic flux drop/rise on time scales of 10310^3 seconds, reminiscent of eclipse ingress/egress in eclipsing X-ray binaries. However, the exhaustive search for periodicity in the reasonable range of 50 ksec to 50 days failed to reveal an orbital period. The failure to reveal any periodicity is consistent with the long period (30\ge30 yrs) predicted for this system given the optical identification of the secondary with an asymptotic giant star. Also, the eclipse-like dramatic flux changes in hours are hard to explain under the white dwarf model, but can in principle be explained by disk temperature changes induced by accretion rate variations under the intermediate mass black hole model.Comment: 19 pages, 7 figures, 1 table, to appear in ApJ

    The General Theory of Quantum Field Mixing

    Get PDF
    We present a general theory of mixing for an arbitrary number of fields with integer or half-integer spin. The time dynamics of the interacting fields is solved and the Fock space for interacting fields is explicitly constructed. The unitary inequivalence of the Fock space of base (unmixed) eigenstates and the physical mixed eigenstates is shown by a straightforward algebraic method for any number of flavors in boson or fermion statistics. The oscillation formulas based on the nonperturbative vacuum are derived in a unified general formulation and then applied to both two and three flavor cases. Especially, the mixing of spin-1 (vector) mesons and the CKM mixing phenomena in the Standard Model are discussed emphasizing the nonperturbative vacuum effect in quantum field theory

    Adaptive Genetic Algorithm for Crystal Structure Prediction

    Get PDF
    We present a genetic algorithm (GA) for structural search that combines the speed of structure exploration by classical potentials with the accuracy of density functional theory (DFT) calculations in an adaptive and iterative way. This strategy increases the efficiency of the DFT-based GA by several orders of magnitude. This gain allows considerable increase in size and complexity of systems that can be studied by first principles. The method's performance is illustrated by successful structure identifications of complex binary and ternary inter-metallic compounds with 36 and 54 atoms per cell, respectively. The discovery of a multi-TPa Mg-silicate phase with unit cell containing up to 56 atoms is also reported. Such phase is likely to be an essential component of terrestrial exoplanetary mantles.Comment: 14 pages, 4 figure

    Mixing and oscillations of neutral particles in Quantum Field Theory

    Full text link
    We study the mixing of neutral particles in Quantum Field Theory: neutral boson field and Majorana field are treated in the case of mixing among two generations. We derive the orthogonality of flavor and mass representations and show how to consistently calculate oscillation formulas, which agree with previous results for charged fields and exhibit corrections with respect to the usual quantum mechanical expressions.Comment: 8 pages, revised versio

    Crystal Structure and Chemistry of Topological Insulators

    Full text link
    Topological surface states, a new kind of electronic state of matter, have recently been observed on the cleaved surfaces of crystals of a handful of small band gap semiconductors. The underlying chemical factors that enable these states are crystal symmetry, the presence of strong spin orbit coupling, and an inversion of the energies of the bulk electronic states that normally contribute to the valence and conduction bands. The goals of this review are to briefly introduce the physics of topological insulators to a chemical audience and to describe the chemistry, defect chemistry, and crystal structures of the compounds in this emergent field.Comment: Submitted to Journal of Materials Chemistry, 47 double spaced pages, 9 figure

    Nucleon-Quarkonium Elastic Scattering and the Gluon Contribution to Nucleon Spin

    Full text link
    It is shown that the amplitude for the scattering of a heavy quarkonium system from a nucleon near threshold is completely determined by the fraction of angular momentum, as well as linear momentum, carried by gluons in the nucleon. A form for the quarkonium-nucleon non-relativistic potential is derived.Comment: 4 pages, no figures. Author's e-mail: [email protected]

    Lepton charge and neutrino mixing in pion decay processes

    Full text link
    We consider neutrino mixing and oscillations in quantum field theory and compute the neutrino lepton charge in decay processes where neutrinos are generated. We also discuss the proper definition of flavor charge and states and clarify the issues of the possibility of different mass parameters in field mixing.Comment: 13 page

    Quark Imaging in the Proton Via Quantum Phase-Space Distributions

    Full text link
    We develop the concept of quantum phase-space (Wigner) distributions for quarks and gluons in the proton. To appreciate their physical content, we analyze the contraints from special relativity on the interpretation of elastic form factors, and examine the physics of the Feynman parton distributions in the proton's rest frame. We relate the quark Wigner functions to the transverse-momentum dependent parton distributions and generalized parton distributions, emphasizing the physical role of the skewness parameter. We show that the Wigner functions allow to visualize quantum quarks and gluons using the language of the classical phase space. We present two examples of the quark Wigner distributions and point out some model-independent features.Comment: 20 pages with 3 fiture
    corecore