24,054 research outputs found

    Heat transfer in the tip region of a rotor blade simulator

    Get PDF
    The objective of this study of heat transfer in the tip region of a rotor blade simulator is to acquire, through experimental and computational approaches, improved understanding of the nature of the flow and convective heat transfer in the blade tip region. Such information should enable designers to make more accurate predictions of performance and durability, and should support the future development of improved blade tip cooling schemes

    Heat transfer in the tip region of a rotor blade simulator

    Get PDF
    In gas turbines, the blades of axial turbine stages rotate in close proximity to a stationary peripheral wall. Differential expansion of the turbine wheel, blades, and the shroud causes variations in the size of the clearance gap between blade tip and stationary shroud. The necessity to tolerate this differential thermal expansion dictates that the clearance gap cannot be eliminated altogether, despite accurate engine machining. Pressure differences between the pressure and suction sides of a blade drives a flow through the clearance gap. This flow, the tip leakage flow, is detrimental to engine performance. The primary detrimental effect of tip leakage flow is the reduction of turbine stage efficiency, and a second is the convective heat transfer associated with the flow. The surface area at the blade tip in contact with the hot working gas represents an additional thermal loading on the blade which, together with heat transfer to the suction and pressure side surface area, must be removed by the blade internal cooling flows. Experimental results concerned with the local heat transfer characteristics on all surfaces of shrouded, rectangular cavities are reported. A brief discussion of the mass transfer system used is given

    ConfidentCare: A Clinical Decision Support System for Personalized Breast Cancer Screening

    Full text link
    Breast cancer screening policies attempt to achieve timely diagnosis by the regular screening of apparently healthy women. Various clinical decisions are needed to manage the screening process; those include: selecting the screening tests for a woman to take, interpreting the test outcomes, and deciding whether or not a woman should be referred to a diagnostic test. Such decisions are currently guided by clinical practice guidelines (CPGs), which represent a one-size-fits-all approach that are designed to work well on average for a population, without guaranteeing that it will work well uniformly over that population. Since the risks and benefits of screening are functions of each patients features, personalized screening policies that are tailored to the features of individuals are needed in order to ensure that the right tests are recommended to the right woman. In order to address this issue, we present ConfidentCare: a computer-aided clinical decision support system that learns a personalized screening policy from the electronic health record (EHR) data. ConfidentCare operates by recognizing clusters of similar patients, and learning the best screening policy to adopt for each cluster. A cluster of patients is a set of patients with similar features (e.g. age, breast density, family history, etc.), and the screening policy is a set of guidelines on what actions to recommend for a woman given her features and screening test scores. ConfidentCare algorithm ensures that the policy adopted for every cluster of patients satisfies a predefined accuracy requirement with a high level of confidence. We show that our algorithm outperforms the current CPGs in terms of cost-efficiency and false positive rates

    Thermodynamic Phase Diagram of the Quantum Hall Skyrmion System

    Full text link
    We numerically study the interacting quantum Hall skyrmion system based on the Chern-Simons action. By noticing that the action is invariant under global spin rotations in the spin space with respect to the magnetic field direction, we obtain the low-energy effective action for a many skyrmion system. Performing extensive molecular dynamics simulations, we establish the thermodynamic phase diagram for a many skyrmion system.Comment: 4 pages, RevTex, 2 postscript figure

    Bell's inequality with Dirac particles

    Full text link
    We study Bell's inequality using the Bell states constructed from four component Dirac spinors. Spin operator is related to the Pauli-Lubanski pseudo vector which is relativistic invariant operator. By using Lorentz transformation, in both Bell states and spin operator, we obtain an observer independent Bell's inequality, so that it is maximally violated as long as it is violated maximally in the rest frame.Comment: 7 pages. arXiv admin note: text overlap with arXiv:quant-ph/0308156 by other author

    Bag Formation in Quantum Hall Ferromagnets

    Full text link
    Charged skyrmions or spin-textures in the quantum Hall ferromagnet at filling factor nu=1 are reinvestigated using the Hartree-Fock method in the lowest Landau level approximation. It is shown that the single Slater determinant with the minimum energy in the unit charge sector is always of the hedgehog form. It is observed that the magnetization vector's length deviates locally from unity, i.e. a bag is formed which accommodates the excess charge. In terms of a gradient expansion for extended spin-textures a novel O(3) type of effective action is presented, which takes bag formation into account.Comment: 13 pages, 3 figure

    The effect of inter-edge Coulomb interactions on the transport between quantum Hall edge states

    Full text link
    In a recent experiment, Milliken {\em et al.} demonstrated possible evidence for a Luttinger liquid through measurements of the tunneling conductance between edge states in the ν=1/3\nu=1/3 quantum Hall plateau. However, at low temperatures, a discrepancy exists between the theoretical predictions based on Luttinger liquid theory and experiment. We consider the possibility that this is due to long-range Coulomb interactions which become dominant at low temperatures. Using renormalization group methods, we calculate the cross-over behaviour from Luttinger liquid to the Coulomb interaction dominated regime. The cross-over behaviour thus obtained seems to resolve one of the discrepancies, yielding good agreement with experiment.Comment: 4 pages, RevTex, 2 postscript figures, tex file and figures have been uuencode

    Maximal induced matchings in triangle-free graphs

    Full text link
    An induced matching in a graph is a set of edges whose endpoints induce a 11-regular subgraph. It is known that any nn-vertex graph has at most 10n/5≈1.5849n10^{n/5} \approx 1.5849^n maximal induced matchings, and this bound is best possible. We prove that any nn-vertex triangle-free graph has at most 3n/3≈1.4423n3^{n/3} \approx 1.4423^n maximal induced matchings, and this bound is attained by any disjoint union of copies of the complete bipartite graph K3,3K_{3,3}. Our result implies that all maximal induced matchings in an nn-vertex triangle-free graph can be listed in time O(1.4423n)O(1.4423^n), yielding the fastest known algorithm for finding a maximum induced matching in a triangle-free graph.Comment: 17 page
    • …
    corecore