20,987 research outputs found

    Reply to “Comment on ‘Microwave vortex dissipation of superconducting Nd-Ce-Cu-O epitaxial films in high magnetic fields’”

    Get PDF
    We demonstrate with detailed analysis that the criticisms in the preceding Comment by Blackstead are largely due to insufficient understanding of the experimental issues associated with our system or the imposition of formalism that is inapplicable to our experiments. In particular, we distinguish the conventional formalism for “field-defined” surface resistance applicable to measurements on samples with filling factors i.e., the ratio of the sample volume to that of the microwave cavity approaching 1 from our “dissipation-defined” surface resistance derived from first principles for measurements on samples with very small filling factors

    Infrared spectra of the cluster ions H7O<sup> + </sup><sub>3</sub>·H2 and H9O<sup> + </sup><sub>4</sub>·H2

    Get PDF
    Infrared spectra of hydrated hydronium ions weakly bound to an H2 molecule, specifically H7O + 3 ·H2 and H9O + 4 ·H2, have been observed. Mass-selected parent ions, trapped in a radio frequency ion trap, are excited by a tunable infrared laser; following absorption, the complex predissociates with loss of the H2, and the resulting fragment ions are detected. Spectra have been taken from 3000 to 4000 cm^−1, with a resolution of 1.2 cm^−1. They are compared to recent theoretical and experimental spectra of the hydronium ion hydrates alone. Binding an H2 molecule to these clusters should only weakly perturb their vibrations; if so, our spectra should be similar to spectra of the hydrated hydronium ions H7O + 3 and H9O + 4

    Observation of vortices and hidden pseudogap from scanning tunneling spectroscopic studies of electron-doped cuprate superconductor Sr0.9La0.1CuO2Sr_{0.9}La_{0.1}CuO_2

    Get PDF
    We present the first demonstration of vortices in an electron-type cuprate superconductor, the highest TcT_c (= 43 K) electron-type cuprate Sr0.9La0.1CuO2Sr_{0.9}La_{0.1}CuO_2. Our spatially resolved quasiparticle tunneling spectra reveal a hidden low-energy pseudogap inside the vortex core and unconventional spectral evolution with temperature and magnetic field. These results cannot be easily explained by the scenario of pure superconductivity in the ground state of high-TcT_c superconductivity.Comment: 6 pages, 4 figures. Two new graphs have been added into Figure 2. Accepted for publication in Europhysics Letters. Corresponding author: Nai-Chang Yeh (E-mail: [email protected]

    Average and worst-case specifications of precipitating auroral electron environment

    Get PDF
    The precipitation electrons in the auroral environment are highly variable in their energy and intensity in both space and time. As such they are a source of potential hazard to the operation of the Space Shuttle and other large spacecraft operating in polar orbit. In order to assess these hazards both the average and extreme states of the precipitating electrons must be determined. Work aimed at such a specification is presented. First results of a global study of the average characteristics are presented. In this study the high latitude region was divided into spatial elements in magnetic local time and corrected geomagnetic latitude. The average electron spectrum was then determined in each spatial element for seven different levels of activity as measured by K sub p using an extremely large data set of auroral observations. Second a case study of an extreme auroral electron environment is presented, in which the electrons are accelerated through field aligned potential as high as 30,000 volts and in which the spacecraft is seen to charge negatively to a potential approaching .5 kilovolts

    Scanning Tunneling Spectroscopic Studies of the Effects of Dielectrics and Metallic Substrates on the Local Electronic Characteristics of Graphene

    Get PDF
    Atomically resolved imaging and spectroscopic characteristics of graphene grown by chemical vapor deposition (CVD) on copper foils are investigated and compared with those of mechanical exfoliated graphene on SiO_2. For exfoliated graphene, the local spectral deviations from ideal behavior may be attributed to strain induced by the SiO_2 substrate. For CVD grown graphene, the lattice structure appears strongly distorted by the underlying copper, with regions in direct contact with copper showing nearly square lattices whereas suspended regions from thermal relaxation exhibiting nearly honeycomb or hexagonal lattice structures. The electronic density of states (DOS) correlates closely with the atomic arrangements of carbon, showing excess zero-bias tunneling conductance and nearly energy-independent DOS for strongly distorted graphene, in contrast to the linearly dispersive DOS for suspended graphene. These results suggest that graphene can interact strongly with both metallic and dielectric materials in close proximity, leading to non-negligible modifications to the electronic properties

    Effects of Self-field and Low Magnetic Fields on the Normal-Superconducting Phase Transition

    Full text link
    Researchers have studied the normal-superconducting phase transition in the high-TcT_c cuprates in a magnetic field (the vortex-glass or Bose-glass transition) and in zero field. Often, transport measurements in "zero field" are taken in the Earth's ambient field or in the remnant field of a magnet. We show that fields as small as the Earth's field will alter the shape of the current vs. voltage curves and will result in inaccurate values for the critical temperature TcT_c and the critical exponents ν\nu and zz, and can even destroy the phase transition. This indicates that without proper screening of the magnetic field it is impossible to determine the true zero-field critical parameters, making correct scaling and other data analysis impossible. We also show, theoretically and experimentally, that the self-field generated by the current flowing in the sample has no effect on the current vs. voltage isotherms.Comment: 4 pages, 4 figure

    Dimensionality of superconductivity in the infinite-layer high-temperature cuprate Sr0.9M0.1CuO2 (M = La, Gd)

    Get PDF
    The high magnetic field phase diagram of the electron-doped infinite layer high-temperature superconducting (high-T_c) compound Sr_{0.9}La_{0.1}CuO_2 was probed by means of penetration depth and magnetization measurements in pulsed fields to 60 T. An anisotropy ratio of 8 was detected for the upper critical fields with H parallel (H_{c2}^{ab}) and perpendicular (H_{c2}^c) to the CuO_2 planes, with H_{c2}^{ab} extrapolating to near the Pauli paramagnetic limit of 160 T. The longer superconducting coherence length than the lattice constant along the c-axis indicates that the orbital degrees of freedom of the pairing wavefunction are three dimensional. By contrast, low-field magnetization and specific heat measurements of Sr_{0.9}Gd_{0.1}CuO_2 indicate a coexistence of bulk s-wave superconductivity with large moment Gd paramagnetism close to the CuO_2 planes, suggesting a strong confinement of the spin degrees of freedom of the Cooper pair to the CuO_2 planes. The region between H_{c2}^{ab} and the irreversibility line in the magnetization, H_{irr}^{ab}, is anomalously large for an electron-doped high-T_c cuprate, suggesting the existence of additional quantum fluctuations perhaps due to a competing spin-density wave order.Comment: 4 pages, 4 figures, submitted to Phys. Rev. B, Rapid Communications (2004). Corresponding author: Nai-Chang Yeh (E-mail: [email protected]
    corecore