468 research outputs found

    Uncertainty in the Fluctuations of the Price of Stocks

    Full text link
    We report on a study of the Tehran Price Index (TEPIX) from 2001 to 2006 as an emerging market that has been affected by several political crises during the recent years, and analyze the non-Gaussian probability density function (PDF) of the log returns of the stocks' prices. We show that while the average of the index did not fall very much over the time period of the study, its day-to-day fluctuations strongly increased due to the crises. Using an approach based on multiplicative processes with a detrending procedure, we study the scale-dependence of the non-Gaussian PDFs, and show that the temporal dependence of their tails indicates a gradual and systematic increase in the probability of the appearance of large increments in the returns on approaching distinct critical time scales over which the TEPIX has exhibited maximum uncertainty.Comment: 5 pages, 5 figures. Accepted to appear in IJMP

    Localization of elastic waves in heterogeneous media with off-diagonal disorder and long-range correlations

    Full text link
    Using the Martin-Siggia-Rose method, we study propagation of acoustic waves in strongly heterogeneous media which are characterized by a broad distribution of the elastic constants. Gaussian-white distributed elastic constants, as well as those with long-range correlations with non-decaying power-law correlation functions, are considered. The study is motivated in part by a recent discovery that the elastic moduli of rock at large length scales may be characterized by long-range power-law correlation functions. Depending on the disorder, the renormalization group (RG) flows exhibit a transition to localized regime in {\it any} dimension. We have numerically checked the RG results using the transfer-matrix method and direct numerical simulations for one- and two-dimensional systems, respectively.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Let

    Forecasting for Social Good

    Full text link
    Forecasting plays a critical role in the development of organisational business strategies. Despite a considerable body of research in the area of forecasting, the focus has largely been on the financial and economic outcomes of the forecasting process as opposed to societal benefits. Our motivation in this study is to promote the latter, with a view to using the forecasting process to advance social and environmental objectives such as equality, social justice and sustainability. We refer to such forecasting practices as Forecasting for Social Good (FSG) where the benefits to society and the environment take precedence over economic and financial outcomes. We conceptualise FSG and discuss its scope and boundaries in the context of the "Doughnut theory". We present some key attributes that qualify a forecasting process as FSG: it is concerned with a real problem, it is focused on advancing social and environmental goals and prioritises these over conventional measures of economic success, and it has a broad societal impact. We also position FSG in the wider literature on forecasting and social good practices. We propose an FSG maturity framework as the means to engage academics and practitioners with research in this area. Finally, we highlight that FSG: (i) cannot be distilled to a prescriptive set of guidelines, (ii) is scalable, and (iii) has the potential to make significant contributions to advancing social objectives.Comment: 28 pages, 6 figure

    Level Crossing Analysis of Growing surfaces

    Full text link
    We investigate the average frequency of positive slope να+\nu_{\alpha}^{+} , crossing the height α=h−hˉ\alpha = h- \bar h in the surface growing processes. The exact level crossing analysis of the random deposition model and the Kardar-Parisi-Zhang equation in the strong coupling limit before creation of singularities are given.Comment: 5 pages, two column, latex, three figure

    Long range correlation in cosmic microwave background radiation

    Full text link
    We investigate the statistical anisotropy and Gaussianity of temperature fluctuations of Cosmic Microwave Background radiation (CMB) data from {\it Wilkinson Microwave Anisotropy Probe} survey, using the multifractal detrended fluctuation analysis, rescaled range and scaled windowed variance methods. The multifractal detrended fluctuation analysis shows that CMB fluctuations has a long range correlation function with a multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the multifractality nature of temperature fluctuation of CMB is mainly due to the long-range correlations and the map is consistent with a Gaussian distribution.Comment: 10 pages, 7 figures, V2: Added comments, references and major correction
    • …
    corecore