41,059 research outputs found
Tripartite Graph Clustering for Dynamic Sentiment Analysis on Social Media
The growing popularity of social media (e.g, Twitter) allows users to easily
share information with each other and influence others by expressing their own
sentiments on various subjects. In this work, we propose an unsupervised
\emph{tri-clustering} framework, which analyzes both user-level and tweet-level
sentiments through co-clustering of a tripartite graph. A compelling feature of
the proposed framework is that the quality of sentiment clustering of tweets,
users, and features can be mutually improved by joint clustering. We further
investigate the evolution of user-level sentiments and latent feature vectors
in an online framework and devise an efficient online algorithm to sequentially
update the clustering of tweets, users and features with newly arrived data.
The online framework not only provides better quality of both dynamic
user-level and tweet-level sentiment analysis, but also improves the
computational and storage efficiency. We verified the effectiveness and
efficiency of the proposed approaches on the November 2012 California ballot
Twitter data.Comment: A short version is in Proceeding of the 2014 ACM SIGMOD International
Conference on Management of dat
Formation of a Double-decker Magnetic Flux Rope in the Sigmoidal Solar Active Region 11520
In this paper, we address the formation of a magnetic flux rope (MFR) that
erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15.
Through analyzing the long-term evolution of the associated active region
observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic
Imager on board the Solar Dynamics Observatory, it is found that the twisted
field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from
two groups of sheared arcades near the main polarity inversion line half day
before the eruption. The temperature within the twisted field and sheared
arcades is higher than that of the ambient volume, suggesting that magnetic
reconnection most likely works there. The driver behind the reconnection is
attributed to shearing and converging motions at magnetic footpoints with
velocities in the range of 0.1--0.6 km s. The rotation of the preceding
sunspot also contributes to the MFR buildup. Extrapolated three-dimensional
non-linear force-free field structures further reveal the locations of the
reconnection to be in a bald-patch region and in a hyperbolic flux tube. About
two hours before the eruption, indications for a second MFR in the form of an
S-shaped hot channel are seen. It lies above the original MFR that continuously
exists and includes a filament. The whole structure thus makes up a stable
double-decker MFR system for hours prior to the eruption. Eventually, after
entering the domain of instability, the high-lying MFR impulsively erupts to
generate a fast coronal mass ejection and X-class flare; while the low-lying
MFR remains behind and continuously maintains the sigmoidicity of the active
region.Comment: accepted for publication in ApJ. 12 pages, 9 figures, and 1 table.
ISEST defines this eruption as a textbook event, please see the website
http://solar.gmu.edu/heliophysics/index.php for associated magnetic cloud
analysi
Mechanical Properties of Glass Forming Systems
We address the interesting temperature range of a glass forming system where
the mechanical properties are intermediate between those of a liquid and a
solid. We employ an efficient Monte-Carlo method to calculate the elastic
moduli, and show that in this range of temperatures the moduli are finite for
short times and vanish for long times, where `short' and `long' depend on the
temperature. By invoking some exact results from statistical mechanics we offer
an alternative method to compute shear moduli using Molecular Dynamics
simulations, and compare those to the Monte-Carlo method. The final conclusion
is that these systems are not "viscous fluids" in the usual sense, as their
actual time-dependence concatenates solid-like materials with varying local
shear moduli
Magnetothermoelectric transport properties in phosphorene
We numerically study the electrical and thermoelectric transport properties
in phosphorene in the presence of both a magnetic field and disorder. The
quantized Hall conductivity is similar to that of a conventional
two-dimensional electron gas, but the positions of all the Hall plateaus shift
to the left due to the spectral asymmetry, in agreement with the experimental
observations. The thermoelectric conductivity and Nernst signal exhibit
remarkable anisotropy, and the thermopower is nearly isotropic. When a bias
voltage is applied between top and bottom layers of phosphorene, both
thermopower and Nernst signal are enhanced and their peak values become large.Comment: 8 pages, 9 figure
Electronic Structure and Lattice dynamics of NaFeAs
The similarity of the electronic structures of NaFeAs and other Fe pnictides
has been demonstrated on the basis of first-principle calculations. The global
double-degeneracy of electronic bands along X-M and R-A direction indicates the
instability of Fe pnictides and is explained on the basis of a tight-binding
model. The de Haas-van Alphen parameters for the Fermi surface (FS) of NaFeAs
have been calculated. A spin density wave (SDW)
instead of a charge density wave (CDW) ground state is predicted based on the
calculated generalized susceptibility and a criterion
derived from a restricted Hatree-Fock model. The strongest electron-phonon
(e-p) coupling has been found to involve only As, Na z-direction vibration with
linear-response calculations. A possible enhancement mechanism for e-p coupling
due to correlation is suggested
High-precision Monte Carlo study of directed percolation in (d+1) dimensions
We present a Monte Carlo study of the bond and site directed (oriented)
percolation models in dimensions on simple-cubic and
body-centered-cubic lattices, with . A dimensionless ratio is
defined, and an analysis of its finite-size scaling produces improved estimates
of percolation thresholds. We also report improved estimates for the standard
critical exponents. In addition, we study the probability distributions of the
number of wet sites and radius of gyration, for .Comment: 11 pages, 21 figure
A Case for Redundant Arrays of Hybrid Disks (RAHD)
Hybrid Hard Disk Drive was originally concepted by Samsung, which incorporates a Flash memory in a magnetic disk. The combined ultra-high-density benefits of magnetic storage and the low-power and fast read access of NAND technology inspires us to construct Redundant Arrays of Hybrid Disks (RAHD) to offer a possible alternative to today’s Redundant Arrays of Independent Disks (RAIDs) and/or Massive Arrays of Idle Disks (MAIDs). We first design an internal management system (including Energy-Efficient Control) for hybrid disks. Three traces collected from real systems as well as a synthetic trace are then used to evaluate the RAHD arrays. The trace-driven experimental results show: in the high speed mode, a RAHD outplays the purely-magnetic-disk-based RAIDs by a factor of 2.4–4; in the energy-efficient mode, a RAHD4/5 can save up to 89% of energy at little performance degradationPeer reviewe
New Consequences of Induced Transparency in a Double-Lambda scheme: Destructive Interference In Four-wave Mixing
We investigate a four-state system interacting with long and short laser
pulses in a weak probe beam approximation. We show that when all lasers are
tuned to the exact unperturbed resonances, part of the four-wave mixing (FWM)
field is strongly absorbed. The part which is not absorbed has the exact
intensity required to destructively interfere with the excitation pathway
involved in producing the FWM state. We show that with this three-photon
destructive interference, the conversion efficiency can still be as high as
25%. Contrary to common belief,our calculation shows that this process, where
an ideal one-photon electromagnetically induced transparency is established, is
not most suitable for high efficiency conversion. With appropriate
phase-matching and propagation distance, and when the three-photon destructive
interference does not occur, we show that the photon flux conversion efficiency
is independent of probe intensity and can be close to 100%. In addition, we
show clearly that the conversion efficiency is not determined by the maximum
atomic coherence between two lower excited states, as commonly believed. It is
the combination of phase-matching and constructive interference involving the
two terms arising in producing the mixing wave that is the key element for the
optimized FWM generation. Indeed, in this scheme no appreciable excited state
is produced, so that the atomic coherence between states |0> and |2> is always
very small.Comment: Submitted to Phys. Rev. A, 7 pages, 4 figure
Polariton Condensation and Lasing
The similarities and differences between polariton condensation in
microcavities and standard lasing in a semiconductor cavity structure are
reviewed. The recent experiments on "photon condensation" are also reviewed.Comment: 23 pages, 6 figures; Based on the book chapter in Exciton Polaritons
in Microcavities, (Springer Series in Solid State Sciences vol. 172), V.
Timofeev and D. Sanvitto, eds., (Springer, 2012
The Three-body Force and the Tetraquark Interpretation of Light Scalar Mesons
We study the possible tetraquark interpretation of light scalar meson states
, , , within the framework of the
non-relativistic potential model. The wave functions of tetraquark states are
obtained in a space spanned by multiple Gaussian functions. We find that the
mass spectra of the light scalar mesons can be well accommodated in the
tetraquark picture if we introduce a three-body quark interaction in the quark
model. Using the obtained multiple Gaussian wave functions, the decay constants
of tetraquarks are also calculated within the ``fall apart'' mechanism
- …
