144 research outputs found

    Formation of the physical vapor deposited CdS Cu In,Ga Se2 interface in highly efficient thin film solar cells

    Get PDF
    We report on the buffer absorber interface formation in highly efficient 14.5 , AM1.5 ZnO CdS Cu In,Ga Se2 solar cells with a physical vapor deposited CdS buffer. For Se decapped Cu In,Ga Se2 CIGSe absorbers we observe sulfur passivation of the CIGSe grain boundaries during CdS growth and at the interface a thermally stimulated formation of a region with a higher band gap than that of the absorber bulk, determining the height of the potential barrier at the CdS CIGSe interface. For air exposed CIGSe samples the grain boundary passivation is impeded by a native oxide adsorbate layer at the CIGSe surface determining the thermal stability of the potential barrier heigh

    Depth profile analyses of films grown at different temperatures

    Get PDF
    Cu(In,Ga)Se2films are used as absorber layers in chalcopyrite thin filmsolar cells. As the gallium concentration in the absorber can be used to control the band gap, there have been many efforts to vary the gallium concentration in depth to gain an optimum balance of light absorption, carrier collection, and recombination at different depths of the absorber film, leading to improved quantum efficiency. In this study, we investigate the effect of the maximum substrate temperature during film growth on the depth dependent gallium concentration. For the in-depth gallium concentration analyses, we use two techniques, covering complementary depth ranges. Angle dependent soft x-ray emission spectroscopy provides access to information depths between 20 and 470 nm, which covers the depth range of the space charge region, where most of the photoexcited carriers are generated. Therefore, this depth range is of particular interest. To complement this investigation we use secondary neutral mass spectrometry, which destructively probes the whole thickness of the absorber (≈2 μm). The two methods show increasingly pronounced gallium and indium gradients with decreasing maximum substrate temperature. The probing of the complementary depth ranges of the absorbers gives a consistent picture of the in-depth gallium distribution, which provides a solid basis for a comprehensive discussion about the effect of a reduced substrate temperature on the formation of gallium gradients in Cu(In,Ga)Se2 and the device performance of the corresponding reference solar cells

    Temperature Dependence of the Exciton Gap in Monocrystalline CuGaS2

    Get PDF
    Single crystals of CuGaS2 have been grown by chemical vapour transport. Their near-band gap photoluminescence properties were investigated in the temperature range of 10-300 K. The variation of the exciton gap energy with temperature was studied by means of a three-parameter thermodynamic model, the Einstein model and the Pässler model. Values of the band gap at T=0 K, of a dimensionless constant related to the electron-phonon coupling, and of an effective and a cut-off phonon energy have been estimated. It has also been found that the major contribution of phonons to the shift of Eg as a function of T in CuGaS2 is mainly from optical phonons

    A complementary neutron and anomalous x-ray diffraction study

    Get PDF
    Distinguishing the scattering contributions of isoelectronic atomic species by means of conventional x-ray- and/or electron diffraction techniques is a difficult task. Such a problem occurs when determining the crystal structure of compounds containing different types of atoms with equal number of electrons. We propose a new structural model of Cu(InxGa1−x)3Se5 which is valid for the entire compositional range of the CuIn3Se5–CuGa3Se5 solid solution. Our model is based on neutron and anomalous x-ray diffraction experiments. These complementary techniques allow the separation of scattering contributions of the isoelectronic species Cu+ and Ga3+, contributing nearly identically in monoenergetic x-ray diffraction experiments. We have found that CuIII3Se5 (III=In,Ga) in its room temperature near-equilibrium modification exhibits a modified stannite structure (space group I4¯2m). Different occupation factors of the species involved, Cu+, In3+, Ga3+, and vacancies have been found at three different cationic positions of the structure (Wyckoff sites 2a, 2b, and 4d) depending on the composition of the compound. Significantly, Cu+ does not occupy the 2b site for the In-free compound, but does for the In-containing case. Structural parameters, including lattice constants, tetragonal distortions, and occupation factors are given for samples covering the entire range of the CuIn3Se5–CuGa3Se5 solid solution. At the light of the result, the denotation of Cu-poor 1:3:5 compounds as chalcopyrite-related materials is only valid in reference to their composition

    Intermixing at the heterointerface between ZnS Zn S,O bilayer buffer and CuInS2 thin film solar cell absorber

    Get PDF
    The application of Zn compounds as buffer layers was recently extended to wide gap CuInS2 CIS based thin film solar cells. Using a new chemical deposition route for the buffer preparation aiming at the deposition of a single layer, nominal ZnS buffer without the need for any toxic reactants such as, e.g. hydrazine has helped to achieve a similar efficiency as respective CdS buffered reference devices. After identifying the deposited Zn compound, as ZnS Zn S,O bi layer buffer in former investigations [M. Bär, A. Ennaoui, J. Klaer, T. Kropp, R. S ez Araoz, N. Allsop, I. Lauermann, H. W. Schock, and M.C. Lux Steiner, Formation of a ZnS Zn S,O bilayer buffer on CuInS2 thin film solar cell absorbers by chemical bath deposition , J. Appl. Phys., accepted.], this time the focus lies on potential diffusion intermixing processes at the buffer absorber interface possibly, clarifying the effect of the heat treatment, which drastically enhances the device performance of respective final solar cells. The interface formation was investigated by x ray photoelectron and x ray excited Auger electron spectroscopy. In addition, photoelectron spectroscopy PES measurements were also conducted using tuneable monochromatized synchrotron radiation in order to gain depth resolved information. The buffer side of the buffer absorber heterointerface were investigated by means of the characterization of Zn S,O ZnS CIS structures where the ZnS Zn S,O bi layer buffer was deposited successively by different deposition times. In order to make the in terms of PES information depth deeply buried absorber side of the buffer absorber heterointerface accessible for characterization, in these cases the buffer layer was etched away by dilute HClaq. We found that while out leached Cu from the absorber layer forms together with the educts in the chemical bath a Zn 1 Z ,Cu2Z S like interlayer between buffer and absorber, Zn is incorporated in the uppermost region of the absorber. Both effects are strongly enhanced by postannealing the Zn S,O ZnS CIS samples. However, it was determined that the major fraction of the Cu and Zn can be found quite close to the heterointerface in the buffer and absorber layer, respectively. Due to this limited in the range of one monolayer spatial extent, these diffusion mechanisms were rather interpreted as a CBD induced and heat treatment promoted Cu Zn ion exchange at the buffer absorber interface. Possible impacts of this intermixing on the performance of the final solar cell devices will also be discusse
    • …
    corecore