1,047 research outputs found
Tantalum oxide coatings as candidate environmental barriers
Tantalum (Ta) oxide, due to its high-temperature capabilities and thermal expansion coefficient similar to silicon nitride, is a promising candidate for environmental barriers for silicon (Si) nitride-based ceramics. This paper focuses on the development of plasma-sprayed Ta oxide as an environmental barrier coating for silicon nitride. Using a D-optimal design of experiments, plasma-spray processing variables were optimized to maximize coating density. The effect of processing variables on coating thickness was also determined. X-ray diffraction (XRD) was use to ascertain that the as-sprayed coatings were comprised of α- and β-Ta2O5, but were fully converted to β-Ta_2O_5 after a 1200 °C heat treatment. Grain growth of the Ta_2O_5 followed a time dependence of t^(0.2) at 1200 °C
Nerve excitability in the rat forelimb: a technique to improve translational utility
Background Nerve excitability testing by threshold-tracking is the only available method to study axonal ion channel function and membrane potential in the clinical setting. The measures are, however, indirect and the interpretation of neuropathic changes remains challenging. The same multiple measures of axonal excitability were adapted to further explore the pathophysiological changes in rodent disease models under pharmacologic and genetic manipulations. These studies are typically limited to the investigation of the “long nerves” such as the tail or the tibial nerves. New method We introduce a novel setup to explore the ulnar nerve excitability in rodents. We provide normative ulnar data in 11 adult female Long Evans rats under anaesthesia by comparison with tibial and caudal nerves. Additionally, these measures were repeated weekly on 3 occasions to determine the repeatability of these tests. Results Nerve excitability assessment of ulnar nerve proved to be a longitudinally repeatable measure of axonal function mature in rats, as were measures in tibial and caudal nerves. Comparison with existing method: Ulnar nerve motor excitability measures were different from the caudal and tibial excitability measures. Most notably, ulnar nerve showed the largest threshold changes during both depolarizing and hyperpolarizing threshold electrotonus. Conclusions Ulnar nerves demonstrate a distinct nerve excitability profile than the caudal and tibial nerves which could have functional and pathological implications
The scientific study of inspiration in the creative process: challenges and opportunities
Inspiration is a motivational state that compels individuals to bring ideas into fruition. Creators have long argued that inspiration is important to the creative process, but until recently, scientists have not investigated this claim. In this article, we review challenges to the study of creative inspiration, as well as solutions to these challenges afforded by theoretical and empirical work on inspiration over the past decade. First, we discuss the problem of definitional ambiguity, which has been addressed through an integrative process of construct conceptualization. Second, we discuss the challenge of how to operationalize inspiration. This challenge has been overcome by the development and validation of the Inspiration Scale (IS), which may be used to assess trait or state inspiration. Third, we address ambiguity regarding how inspiration differs from related concepts (creativity, insight, positive affect) by discussing discriminant validity. Next, we discuss the preconception that inspiration is less important than perspiration (effort), and we review empirical evidence that inspiration and effort both play important- but different-roles in the creative process. Finally, with many challenges overcome, we argue that the foundation is now set for a new generation of research focused on neural under pinnings. We discuss potential challenges to and opportunities for the neuroscientific study of inspiration. A better understanding of the biological basis of inspiration will illuminate the process through which creative ideas fire the soul, such that individuals are compelled to transform ideas into products and solutions that may benefit society
Medical data processing and analysis for remote health and activities monitoring
Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions
Observation Of Singly Ionized Selenium Vacancies In Znse Grown By Molecular Beam Epitaxy
Electron paramagnetic resonance(EPR) has been used to investigate singly ionized selenium vacancy V Se + centers in ZnSe epilayers grown by molecular beam epitaxy(MBE). The study included undoped and nitrogen-doped films. Spectra taken at 8 K and 9.45 GHz, as the magnetic field was rotated in the plane from [100] to [010], showed an isotropic signal at g =2.0027±0.0004 with a linewidth of 5.8 G. In the two samples where this signal was observed, estimates of concentration were approximately 1.1×10 17 and 6.3×10 17 cm −3 . The appearance of the EPR signal correlated with an increase in the Zn/Se beam equivalent pressure ratio (during growth) in undoped films and with an increase in the nitrogen concentration in doped films. We conclude that the singly ionized selenium vacancy may be a dominant point defect in many MBE-grown ZnSe layers and that these defects may play a role in the compensation mechanisms in heavily nitrogen-doped ZnSe thin films
- …