844 research outputs found
An Empirical Examination of Compensation of REIT Managers
Principal-agent literature finds that manager and owner incentives can be aligned with performance contingent contracts. We investigate the compensation of Real Estate Investment Trust (REIT) industry executives. The competitive nature of mortgage and equity markets, in conjunction with the corporate tax exemption available when REITs distribute most of their earnings as dividends, is likely to influence the compensation of REIT managers. Executive compensation is modeled as a function of revenues and unexpected profit. After transforming the model to reduce collinearity and heteroskedasticity, we find compensation to be generally positively related to revenue. We also find unexpected profit to be generally insignificantly related to compensation, but positively related in those cases where it is significant.
Mortgage Lenders' Market Response to a Landmark Regulatory Decision Based on Fair Lending Compliance
Regulation of real estate lending has substantially increased in the past decade. Government efforts to improve compliance with Community Reinvestment Act mandates are evidence of increased emphasis on racial equal opportunity in loan origination. To investigate the impact of these efforts, this paper examines the Federal Reserve Bank rejection of Shawmut National Corporation's application to buy New Dartmouth Bank. Rejection was based on Shawmut's poor compliance with fair-lending guidelines. Testing finds significant negative abnormal stock returns for samples of mortgage lenders on the announcement day of Shawmut's application rejection. In addition, cross-sectional analysis reveals an inverse relationship between national banks' cumulative abnormal returns (CARs) and a measure of fair lending.
Harold Jeffreys's Theory of Probability Revisited
Published exactly seventy years ago, Jeffreys's Theory of Probability (1939)
has had a unique impact on the Bayesian community and is now considered to be
one of the main classics in Bayesian Statistics as well as the initiator of the
objective Bayes school. In particular, its advances on the derivation of
noninformative priors as well as on the scaling of Bayes factors have had a
lasting impact on the field. However, the book reflects the characteristics of
the time, especially in terms of mathematical rigor. In this paper we point out
the fundamental aspects of this reference work, especially the thorough
coverage of testing problems and the construction of both estimation and
testing noninformative priors based on functional divergences. Our major aim
here is to help modern readers in navigating in this difficult text and in
concentrating on passages that are still relevant today.Comment: This paper commented in: [arXiv:1001.2967], [arXiv:1001.2968],
[arXiv:1001.2970], [arXiv:1001.2975], [arXiv:1001.2985], [arXiv:1001.3073].
Rejoinder in [arXiv:0909.1008]. Published in at
http://dx.doi.org/10.1214/09-STS284 the Statistical Science
(http://www.imstat.org/sts/) by the Institute of Mathematical Statistics
(http://www.imstat.org
Parameterized Inapproximability of Target Set Selection and Generalizations
In this paper, we consider the Target Set Selection problem: given a graph
and a threshold value for any vertex of the graph, find a minimum
size vertex-subset to "activate" s.t. all the vertices of the graph are
activated at the end of the propagation process. A vertex is activated
during the propagation process if at least of its neighbors are
activated. This problem models several practical issues like faults in
distributed networks or word-to-mouth recommendations in social networks. We
show that for any functions and this problem cannot be approximated
within a factor of in time, unless FPT = W[P],
even for restricted thresholds (namely constant and majority thresholds). We
also study the cardinality constraint maximization and minimization versions of
the problem for which we prove similar hardness results
Influence Diffusion in Social Networks under Time Window Constraints
We study a combinatorial model of the spread of influence in networks that
generalizes existing schemata recently proposed in the literature. In our
model, agents change behaviors/opinions on the basis of information collected
from their neighbors in a time interval of bounded size whereas agents are
assumed to have unbounded memory in previously studied scenarios. In our
mathematical framework, one is given a network , an integer value
for each node , and a time window size . The goal is to
determine a small set of nodes (target set) that influences the whole graph.
The spread of influence proceeds in rounds as follows: initially all nodes in
the target set are influenced; subsequently, in each round, any uninfluenced
node becomes influenced if the number of its neighbors that have been
influenced in the previous rounds is greater than or equal to .
We prove that the problem of finding a minimum cardinality target set that
influences the whole network is hard to approximate within a
polylogarithmic factor. On the positive side, we design exact polynomial time
algorithms for paths, rings, trees, and complete graphs.Comment: An extended abstract of a preliminary version of this paper appeared
in: Proceedings of 20th International Colloquium on Structural Information
and Communication Complexity (Sirocco 2013), Lectures Notes in Computer
Science vol. 8179, T. Moscibroda and A.A. Rescigno (Eds.), pp. 141-152, 201
An Adaptive Interacting Wang-Landau Algorithm for Automatic Density Exploration
While statisticians are well-accustomed to performing exploratory analysis in
the modeling stage of an analysis, the notion of conducting preliminary
general-purpose exploratory analysis in the Monte Carlo stage (or more
generally, the model-fitting stage) of an analysis is an area which we feel
deserves much further attention. Towards this aim, this paper proposes a
general-purpose algorithm for automatic density exploration. The proposed
exploration algorithm combines and expands upon components from various
adaptive Markov chain Monte Carlo methods, with the Wang-Landau algorithm at
its heart. Additionally, the algorithm is run on interacting parallel chains --
a feature which both decreases computational cost as well as stabilizes the
algorithm, improving its ability to explore the density. Performance is studied
in several applications. Through a Bayesian variable selection example, the
authors demonstrate the convergence gains obtained with interacting chains. The
ability of the algorithm's adaptive proposal to induce mode-jumping is
illustrated through a trimodal density and a Bayesian mixture modeling
application. Lastly, through a 2D Ising model, the authors demonstrate the
ability of the algorithm to overcome the high correlations encountered in
spatial models.Comment: 33 pages, 20 figures (the supplementary materials are included as
appendices
Some discussions of D. Fearnhead and D. Prangle's Read Paper "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation"
This report is a collection of comments on the Read Paper of Fearnhead and Prangle (2011), to appear in the Journal of the Royal Statistical Society Series B, along with a reply from the authors
Sampling constrained probability distributions using Spherical Augmentation
Statistical models with constrained probability distributions are abundant in
machine learning. Some examples include regression models with norm constraints
(e.g., Lasso), probit, many copula models, and latent Dirichlet allocation
(LDA). Bayesian inference involving probability distributions confined to
constrained domains could be quite challenging for commonly used sampling
algorithms. In this paper, we propose a novel augmentation technique that
handles a wide range of constraints by mapping the constrained domain to a
sphere in the augmented space. By moving freely on the surface of this sphere,
sampling algorithms handle constraints implicitly and generate proposals that
remain within boundaries when mapped back to the original space. Our proposed
method, called {Spherical Augmentation}, provides a mathematically natural and
computationally efficient framework for sampling from constrained probability
distributions. We show the advantages of our method over state-of-the-art
sampling algorithms, such as exact Hamiltonian Monte Carlo, using several
examples including truncated Gaussian distributions, Bayesian Lasso, Bayesian
bridge regression, reconstruction of quantized stationary Gaussian process, and
LDA for topic modeling.Comment: 41 pages, 13 figure
Brst Cohomology and Invariants of 4D Gravity in Ashtekar Variables
We discuss the BRST cohomologies of the invariants associated with the
description of classical and quantum gravity in four dimensions, using the
Ashtekar variables. These invariants are constructed from several BRST
cohomology sequences. They provide a systematic and clear characterization of
non-local observables in general relativity with unbroken diffeomorphism
invariance, and could yield further differential invariants for four-manifolds.
The theory includes fluctuations of the vierbein fields, but there exits a
non-trivial phase which can be expressed in terms of Witten's topological
quantum field theory. In this phase, the descent sequences are degenerate, and
the corresponding classical solutions can be identified with the conformally
self-dual sector of Einstein manifolds. The full theory includes fluctuations
which bring the system out of this sector while preserving diffeomorphism
invariance.Comment: 15 page
- …