212 research outputs found

    Elevated micro-topography boosts growth rates in <i>Salicornia procumbens</i> by amplifying a tidally driven oxygen pump:Implications for natural recruitment and restoration

    Get PDF
    • Background and Aims: The growth rate of pioneer species is known to be a critical component determining recruitment success of marsh seedlings on tidal flats. By accelerating growth, recruits can reach a larger size at an earlier date, which reduces the length of the disturbance-free window required for successful establishment. Therefore, the pursuit of natural mechanisms that accelerate growth rates at a local scale may lead to a better understanding of the circumstances under which new establishment occurs, and may suggest new insights with which to perform restoration. This study explores how and why changes in local sediment elevation modify the growth rate of recruiting salt marsh pioneers. • Methods: A mesocosm experiment was designed in which the annual salt marsh pioneer Salicornia procumbens was grown over a series of raised, flat and lowered sediment surfaces, under a variety of tidal inundation regimes and in vertically draining or un-draining sediment. Additional physical tests quantified the effects of these treatments on sediment water-logging and oxygen dynamics, including the use of a planar optode experiment. • Key Results: In this study, the elevation of sediment micro-topography by 2 cm was the overwhelming driver of plant growth rates. Seedlings grew on average 25 % faster on raised surfaces, which represented a significant increase when compared to other groups. Changes in growth aligned well with the amplifying effect of raised sediment beds on a tidally episodic oxygenation process wherein sediment pore spaces were refreshed by oxygen-rich water at the onset of high tide. • Conclusions: Overall, the present study suggests this tidally driven oxygen pump as an explanation for commonly observed natural patterns in salt marsh recruitment near drainage channels and atop raised sediment mounds and reveals a promising way forward to promote the establishment of pioneers in the field

    Religion and Self: Notions from a Cultural Psychological Perspective

    Get PDF
    After a brief introduction of a cultural psychological perspective, this paper turns to the concept of self. The paper proposes to conceive of that reality to which the concepts of self refer as a narrative, employing especially autobiographies and other ego-documents in empirical exploration. After discussing some psychological theories about “self,” the paper points out that they may well be applied in research on personal religiosity

    Shellfish reefs increase water storage capacity on intertidal flats over extensive spatial scales

    Get PDF
    Ecosystem engineering species can affect their environment at multiple spatial scales, from the local scale up to a significant distance, by indirectly affecting the surrounding habitats. Structural changes in the landscape can have important consequences for ecosystem functioning, for example, by increasing retention of limiting resources in the system. Yet, it remains poorly understood how extensive the footprint of ecosystem engineers on the landscape is. Using remote sensing techniques, we reveal that depression storage capacity on intertidal flats is greatly enhanced by engineering by shellfish resulting in intertidal pools. Many organisms use such pools to bridge low water events. This storage capacity was significantly higher both locally within the shellfish reef, but also at extensive spatial scales up to 115 m beyond the physical reef borders. Therefore, the footprint of these ecosystem engineers on the landscape was more than 5 times larger than their actual coverage; the shellfish cover approximately 2% of the total intertidal zone, whereas they influence up to approximately 11% of the area by enhancing water storage capacity. We postulate that increased residence time of water due to higher water storage capacity within engineered landscapes is an important determinant of ecosystem functioning that may extend well beyond the case of shellfish reefs provided here

    CREBBP mutations in individuals without Rubinstein-Taybi syndrome phenotype

    Get PDF
    Item does not contain fulltextMutations in CREBBP cause Rubinstein-Taybi syndrome. By using exome sequencing, and by using Sanger in one patient, CREBBP mutations were detected in 11 patients who did not, or only in a very limited manner, resemble Rubinstein-Taybi syndrome. The combined facial signs typical for Rubinstein-Taybi syndrome were absent, none had broad thumbs, and three had only somewhat broad halluces. All had apparent developmental delay (being the reason for molecular analysis); five had short stature and seven had microcephaly. The facial characteristics were variable; main characteristics were short palpebral fissures, telecanthi, depressed nasal ridge, short nose, anteverted nares, short columella, and long philtrum. Six patients had autistic behavior, and two had self-injurious behavior. Other symptoms were recurrent upper airway infections (n = 5), feeding problems (n = 7) and impaired hearing (n = 7). Major malformations occurred infrequently. All patients had a de novo missense mutation in the last part of exon 30 or beginning of exon 31 of CREBBP, between base pairs 5,128 and 5,614 (codons 1,710 and 1,872). No missense or truncating mutations in this region have been described to be associated with the classical Rubinstein-Taybi syndrome phenotype. No functional studies have (yet) been performed, but we hypothesize that the mutations disturb protein-protein interactions by altering zinc finger function. We conclude that patients with missense mutations in this specific CREBBP region show a phenotype that differs substantially from that in patients with Rubinstein-Taybi syndrome, and may prove to constitute one (or more) separate entities. (c) 2016 Wiley Periodicals, Inc

    The SPINK gene family and celiac disease susceptibility

    Get PDF
    The gene family of serine protease inhibitors of the Kazal type (SPINK) are functional and positional candidate genes for celiac disease (CD). Our aim was to assess the gut mucosal gene expression and genetic association of SPINK1, -2, -4, and -5 in the Dutch CD population. Gene expression was determined for all four SPINK genes by quantitative reverse-transcription polymerase chain reaction in duodenal biopsy samples from untreated (n = 15) and diet-treated patients (n = 31) and controls (n = 16). Genetic association of the four SPINK genes was tested within a total of 18 haplotype tagging SNPs, one coding SNP, 310 patients, and 180 controls. The SPINK4 study cohort was further expanded to include 479 CD cases and 540 controls. SPINK4 DNA sequence analysis was performed on six members of a multigeneration CD family to detect possible point mutations or deletions. SPINK4 showed differential gene expression, which was at its highest in untreated patients and dropped sharply upon commencement of a gluten-free diet. Genetic association tests for all four SPINK genes were negative, including SPINK4 in the extended case/control cohort. No SPINK4 mutations or deletions were observed in the multigeneration CD family with linkage to chromosome 9p21-13 nor was the coding SNP disease-specific. SPINK4 exhibits CD pathology-related differential gene expression, likely derived from altered goblet cell activity. All of the four SPINK genes tested do not contribute to the genetic risk for CD in the Dutch population

    Between a rock and a hard place: Environmental and engineering considerations when designing coastal defence structures

    Get PDF
    Coastal defence structures are proliferating as a result of rising sea levels and stormier seas. With the realisation that most coastal infrastructure cannot be lost or removed, research is required into ways that coastal defence structures can be built to meet engineering requirements, whilst also providing relevant ecosystem services—so-called ecological engineering. This approach requires an understanding of the types of assemblages and their functional roles that are desirable and feasible in these novel ecosystems. We review the major impacts coastal defence structures have on surrounding environments and recent experiments informing building coastal defences in a more ecologically sustainable manner. We summarise research carried out during the THESEUS project (2009–2014) which optimised the design of coastal defence structures with the aim to conserve or restore native species diversity. Native biodiversity could be manipulated on defence structures through various interventions: we created artificial rock pools, pits and crevices on breakwaters; we deployed a precast habitat enhancement unit in a coastal defence scheme; we tested the use of a mixture of stone sizes in gabion baskets; and we gardened native habitat-forming species, such as threatened canopy-forming algae on coastal defence structures. Finally, we outline guidelines and recommendations to provide multiple ecosystem services while maintaining engineering efficacy. This work demonstrated that simple enhancement methods can be cost-effective measures to manage local biodiversity. Care is required, however, in the wholesale implementation of these recommendations without full consideration of the desired effects and overall management goals

    Association between the CHRM2 gene and intelligence in a sample of 304 Dutch families.

    Get PDF
    The CHRM2 gene is thought to be involved in neuronal excitability, synaptic plasticity and feedback regulation of acetylcholine release and has previously been implicated in higher cognitive processing. In a sample of 667 individuals from 304 families, we genotyped three singlenucleotide polymorphisms (SNPs) in the CHRM2 gene on 7q31–35. From all individuals, standardized intelligence measures were available. Using a test of within-family association, which controls for the possible effects of population stratification, a highly significant association was found between the CHRM2 gene and intelligence. The strongest association was between rs324650 and performance IQ (PIQ), where the T allele was associated with an increase of 4.6 PIQ points. In parallel with a large familybased association, we observed an attenuated – although still significant – population-based association, illustrating that population stratification may decrease our chances of detecting allele–trait associations. Such a mechanism has been predicted earlier, and this article is one of the first to empirically show that family-based association methods are not only needed to guard against false positives, but are also invaluable in guarding against false negatives

    The Expression and Localization of N-Myc Downstream-Regulated Gene 1 in Human Trophoblasts

    Get PDF
    The protein N-Myc downstream-regulated gene 1 (NDRG1) is implicated in the regulation of cell proliferation, differentiation, and cellular stress response. NDRG1 is expressed in primary human trophoblasts, where it promotes cell viability and resistance to hypoxic injury. The mechanism of action of NDRG1 remains unknown. To gain further insight into the intracellular action of NDRG1, we analyzed the expression pattern and cellular localization of endogenous NDRG1 and transfected Myc-tagged NDRG1 in human trophoblasts exposed to diverse injuries. In standard conditions, NDRG1 was diffusely expressed in the cytoplasm at a low level. Hypoxia or the hypoxia mimetic cobalt chloride, but not serum deprivation, ultraviolet (UV) light, or ionizing radiation, induced the expression of NDRG1 in human trophoblasts and the redistribution of NDRG1 into the nucleus and cytoplasmic membranes associated with the endoplasmic reticulum (ER) and microtubules. Mutation of the phosphopantetheine attachment site (PPAS) within NDRG1 abrogated this pattern of redistribution. Our results shed new light on the impact of cell injury on NDRG1 expression patterns, and suggest that the PPAS domain plays a key role in NDRG1's subcellular distribution. © 2013 Shi et al

    N-myc downstream regulated gene 1 modulates Wnt-β-catenin signalling and pleiotropically suppresses metastasis

    Get PDF
    Wnt signalling has pivotal roles in tumour progression and metastasis; however, the exact molecular mechanism of Wnt signalling in the metastatic process is as yet poorly defined. Here we demonstrate that the tumour metastasis suppressor gene, NDRG1, interacts with the Wnt receptor, LRP6, followed by blocking of the Wnt signalling, and therefore, orchestrates a cellular network that impairs the metastatic progression of tumour cells. Importantly, restoring NDRG1 expression by a small molecule compound significantly suppressed the capability of otherwise highly metastatic tumour cells to thrive in circulation and distant organs in animal models. In addition, our analysis of clinical cohorts data indicate that Wnt+/NDRG−/LRP+ signature has a strong predictable value for recurrence-free survival of cancer patients. Collectively, we have identified NDRG1 as a novel negative master regulator of Wnt signalling during the metastatic progression, which opens an opportunity to define a potential therapeutic target for metastatic disease
    corecore