21 research outputs found

    Isolation, identification and PCR amplification of merA gene from highly mercury polluted Yamuna river

    Get PDF
    Mercury resistant Escherichia coli strains have been isolated from different mercury polluted sites of India and their minimum inhibitory concentration (MIC) levels were determined. The zone of inhibition was measured to find the antibiotic sensitivity level. The location of mer operon was determined bytransforming the isolated plasmids into mercury sensitive host DH5a cells. Plasmid isolated from transformed DH5a cells were also analyzed and compared with the plasmid profile of the wild-type strains. Oligonucleotides primer were designed by comparing the known reported sequences of merAfrom gram-negative bacteria (Escherichia coli R100) and 1695 bp of merA gene was amplified by PCR

    Biodegradation of catechols by micro-organisms - A short review

    Get PDF
    Many aromatic hydrocarbons and catechols are known to be toxic and carcinogenic for humans, and their contamination of soils and aquifers is of great environmental concern. Soil microorganisms, like Pseudomonas spp. and Mycobacterium, were found to be capable of transforming and degrading toxic catechols to easily absorbable TCA metabolites. These abilities may be useful in removal of toxic organic compounds from the environment. The successful application of microorganisms to thebioremediation of contaminated sites requires a deeper understanding of how microbial degradation proceeds. In this review, the microorganisms involved and the metabolic pathways for the degradation of many aromatic hydrocarbons are summarized and the biological aspects of catechol bioremediation are discussed

    Molecular Cloning and Expression of Bacterial Mercuric Reductase Gene

    Get PDF
    In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr) Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and finally mer operon was localized by transforming isolated E. coli plasmid into mercury sensitive (Hgs) host E. coli DH5a cells. Oligonucleotide primers were designed by comparing the knownreported sequences of merA from Gram-negative bacterium (E. coli plasmid R100) and 1695 bp full length merA gene was amplified by PCR. A 1.695-kb DNA fragment of merA was inserted into isopropyl- -D-thiogalactopyranoside (IPTG) inducible bacterial expression vector pQE-30U/A. E. coli DH5 strains harboring the merA constructs showed higher mercury reductase enzyme (MerA) activity and expressed significantly more MerA than the control strains under aerobic conditions. The purified merA gene over expressed in the specific host E. coli BL21(DE3)Plys cells. Finally, expressed MerA protein was purifiedby Immobilized Metal-chelate Affinity Chromatography (IMAC) by using Ni- NTA column; and ~66.2 kDa bacterial MerA protein was detected after resolving on 10% sodium dodecyl sulphate poly acrylamide gel electrophoresis (SDS PAGE)

    <i>Ganoderma lucidum</i>: Novel Insight into Hepatoprotective Potential with Mechanisms of Action

    No full text
    Ganoderma lucidum (G. lucidum) has been widely used for its health benefits as an edible and traditional medicinal mushroom for thousands of years in Asian countries. It is currently used as a nutraceutical and functional food owing to its major bioactive compounds, polysaccharides and triterpenoids. G. lucidum exhibits a broad range of hepatoprotective impacts in various liver disorders, such as hepatic cancer, nonalcoholic fatty liver disease (NAFLD), alcohol-induced liver disease, hepatitis B, hepatic fibrosis, and liver injury induced by carbon tetrachloride (CCl4) and α-amanitin. G. lucidum protects the liver through a broad range of mechanisms that include the modulation of liver Phase I and II enzymes, the suppression of β-glucuronidase, antifibrotic and antiviral actions, the regulation of the production of nitric oxide (NO), the maintenance of hepatocellular calcium homeostasis, immunomodulatory activity, and scavenging free radicals. G. lucidum could signify an encouraging approach for the management of various chronic hepatopathies, and its potential mechanisms make it a distinctive agent when used alone or with other drugs and applied as a functional food, nutraceutical supplement, or adjuvant to modern medicine. This review summarizes the hepatoprotective properties of G. lucidum with its various mechanisms of action on different liver ailments. Biologically active substances derived from G. lucidum are still being studied for their potential benefits in treating different liver ailments
    corecore