26 research outputs found

    Isolation, identification and PCR amplification of merA gene from highly mercury polluted Yamuna river

    Get PDF
    Mercury resistant Escherichia coli strains have been isolated from different mercury polluted sites of India and their minimum inhibitory concentration (MIC) levels were determined. The zone of inhibition was measured to find the antibiotic sensitivity level. The location of mer operon was determined bytransforming the isolated plasmids into mercury sensitive host DH5a cells. Plasmid isolated from transformed DH5a cells were also analyzed and compared with the plasmid profile of the wild-type strains. Oligonucleotides primer were designed by comparing the known reported sequences of merAfrom gram-negative bacteria (Escherichia coli R100) and 1695 bp of merA gene was amplified by PCR

    Biodegradation of catechols by micro-organisms - A short review

    Get PDF
    Many aromatic hydrocarbons and catechols are known to be toxic and carcinogenic for humans, and their contamination of soils and aquifers is of great environmental concern. Soil microorganisms, like Pseudomonas spp. and Mycobacterium, were found to be capable of transforming and degrading toxic catechols to easily absorbable TCA metabolites. These abilities may be useful in removal of toxic organic compounds from the environment. The successful application of microorganisms to thebioremediation of contaminated sites requires a deeper understanding of how microbial degradation proceeds. In this review, the microorganisms involved and the metabolic pathways for the degradation of many aromatic hydrocarbons are summarized and the biological aspects of catechol bioremediation are discussed

    Molecular Cloning and Expression of Bacterial Mercuric Reductase Gene

    Get PDF
    In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr) Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and finally mer operon was localized by transforming isolated E. coli plasmid into mercury sensitive (Hgs) host E. coli DH5a cells. Oligonucleotide primers were designed by comparing the knownreported sequences of merA from Gram-negative bacterium (E. coli plasmid R100) and 1695 bp full length merA gene was amplified by PCR. A 1.695-kb DNA fragment of merA was inserted into isopropyl- -D-thiogalactopyranoside (IPTG) inducible bacterial expression vector pQE-30U/A. E. coli DH5 strains harboring the merA constructs showed higher mercury reductase enzyme (MerA) activity and expressed significantly more MerA than the control strains under aerobic conditions. The purified merA gene over expressed in the specific host E. coli BL21(DE3)Plys cells. Finally, expressed MerA protein was purifiedby Immobilized Metal-chelate Affinity Chromatography (IMAC) by using Ni- NTA column; and ~66.2 kDa bacterial MerA protein was detected after resolving on 10% sodium dodecyl sulphate poly acrylamide gel electrophoresis (SDS PAGE)

    Molecular characterization of extended spectrum β -lactamases enterobacteriaceae causing lower urinary tract infection among pediatric population.

    Get PDF
    The β-lactam antibiotics have traditionally been the main treatment of Enterobacteriaceae infections, nonetheless, the emergence of species producing β- Lactamases has rendered this class of antibiotics largely ineffective. There are no published data on etiology of urinary tract infections (UTI) and antimicrobial resistance profile of uropathogens among children in Qatar. The aim of this study is to determine the phenotypic and genotypic profiles of antimicrobial resistant Enterobacteriaceae among children with UTI in Qatar. Bacteria were isolated from 727 urine positive cultures, collected from children with UTI between February and June 2017 at the Pediatric Emergency Center, Doha, Qatar. Isolated bacteria were tested for antibiotic susceptibility against sixteen clinically relevant antibiotics using phoenix and Double Disc Synergy Test (DDST) for confirmation of extended-spectrum beta-lactamase (ESBL) production. Existence of genes encoding ESBL production were identified using polymerase chain reaction (PCR). Statistical analysis was done using non-parametric Kappa statistics, Pearson chi-square test and Jacquard's coefficient. 201 (31.7%) of samples were confirmed as Extended Spectrum β -Lactamases (ESBL) Producing Enterobacteriaceae. The most dominant pathogen was 166 (83%) followed by 22 (11%). Resistance was mostly encoded by CTX-M (59%) genes, primarily CTX-MG1 (89.2%) followed by CTX-MG9 (7.7%). 37% of isolated bacteria were harboring multiple genes (2 genes or more). isolates were categorized into 11 clusters, while were grouped into five clonal clusters according to the presence and absence of seven genes namely TEM, SHV, CTX-MG1, CTX-MG2, CTX-MG8 CTX-MG9 CTX-MG25. Our data indicates an escalated problem of ESBL in pediatrics with UTI, which mandates implementation of regulatory programs to reduce the spread of ESBL producing Enterobacteriaceae in the community. The use of cephalosporins, aminoglycosides (gentamicin) and trimethoprim/sulfamethoxazole is compromised in Qatar among pediatric population with UTI, leaving carbapenems and amikacin as the therapeutic option for severe infections caused by ESBL producers

    Association of Helicobacter pylori Infection and Host Cytokine Gene Polymorphism with Gastric Cancer

    No full text
    The global cancer burden of new cases of various types rose with millions of death in 2018. Based on the data extracted by GLOBOCAN 2018, gastric cancer (GC) is the third leading cause of mortality related to cancer across the globe. Carcinogenic or oncogenic infections associated with Helicobacter pylori (Hp) are regarded as one of the essential risk factors for GC development. It contributes to the increased production of cytokines that cause inflammation prior to their growth in the host cells. Hp infections and specific types of polymorphisms within the host cells encoding cytokines are significant contributors to the hostʼs increased susceptibility in terms of the development of GC. Against the backdrop of such an observation is that only a small portion of the cells infected can become malignant. The diversities are a consequence of the differences in the pathogenic pathway of the Hp, susceptibility of the host, environmental conditions, and interplay between these factors. It is evident that hosts carrying cytokine genes with high inflammatory levels and polymorphism tend to exhibit an increased risk of development of GC, with special emphasis being placed on the host cytokines gene polymorphisms

    Preparedness for the Dengue Epidemic: Vaccine as a Viable Approach

    No full text
    Dengue fever is one of the significant fatal mosquito-borne viral diseases and is considered to be a worldwide problem. Aedes mosquito is responsible for transmitting various serotypes of dengue viruses to humans. Dengue incidence has developed prominently throughout the world in the last ten years. The exact number of dengue cases is underestimated, whereas plenty of cases are misdiagnosed as alternative febrile sicknesses. There is an estimation that about 390 million dengue cases occur annually. Dengue fever encompasses a wide range of clinical presentations, usually with undefinable clinical progression and outcome. The diagnosis of dengue depends on serology tests, molecular diagnostic methods, and antigen detection tests. The therapeutic approach relies completely on supplemental drugs, which is far from the real approach. Vaccines for dengue disease are in various stages of development. The commercial formulation Dengvaxia (CYD-TDV) is accessible and developed by Sanofi Pasteur. The vaccine candidate Dengvaxia was inefficient in liberating a stabilized immune reaction toward different serotypes (1–4) of dengue fever. Numerous promising vaccine candidates are now being developed in preclinical and clinical stages even though different serotypes of DENV exist that worsen the situation for a vaccine to be equally effective for all serotypes. Thus, the development of an efficient dengue fever vaccine candidate requires time. Effective dengue fever management can be a multidisciplinary challenge, involving international cooperation from diverse perspectives and expertise to resolve this global concern

    <i>Ganoderma lucidum</i>: Novel Insight into Hepatoprotective Potential with Mechanisms of Action

    No full text
    Ganoderma lucidum (G. lucidum) has been widely used for its health benefits as an edible and traditional medicinal mushroom for thousands of years in Asian countries. It is currently used as a nutraceutical and functional food owing to its major bioactive compounds, polysaccharides and triterpenoids. G. lucidum exhibits a broad range of hepatoprotective impacts in various liver disorders, such as hepatic cancer, nonalcoholic fatty liver disease (NAFLD), alcohol-induced liver disease, hepatitis B, hepatic fibrosis, and liver injury induced by carbon tetrachloride (CCl4) and α-amanitin. G. lucidum protects the liver through a broad range of mechanisms that include the modulation of liver Phase I and II enzymes, the suppression of β-glucuronidase, antifibrotic and antiviral actions, the regulation of the production of nitric oxide (NO), the maintenance of hepatocellular calcium homeostasis, immunomodulatory activity, and scavenging free radicals. G. lucidum could signify an encouraging approach for the management of various chronic hepatopathies, and its potential mechanisms make it a distinctive agent when used alone or with other drugs and applied as a functional food, nutraceutical supplement, or adjuvant to modern medicine. This review summarizes the hepatoprotective properties of G. lucidum with its various mechanisms of action on different liver ailments. Biologically active substances derived from G. lucidum are still being studied for their potential benefits in treating different liver ailments
    corecore