249 research outputs found
Absence of an acute insulin response predicts onset of type 2 diabetes in a Caucasian population with impaired glucose tolerance
Context: In persons with impaired glucose tolerance (IGT), both impaired insulin secretion and insulin resistance contribute to the conversion to type 2 diabetes mellitus (T2DM). However, few studies have used criterion standard measures to asses the predictive value of impaired insulin secretion and insulin resistance for the conversion to T2DM in a Caucasian IGT population. Objectives: The objective of the study was to determine the predictive value of measures of insulin secretion and insulin resistance derived from a hyperglycemic clamp, including the disposition index, for the development of T2DM in a Caucasian IGT population. Design, Setting, and Participants: The population-based Hoorn IGT study consisted of 101 Dutch IGT subjects (aged < 75 yr), with mean 2-h plasma glucose values, of two separate oral glucose tolerance tests, between 8.6 and 11.1 mmol/liter. A hyperglycemic clamp at baseline was performed to assess first-phase and second-phase insulin secretion and insulin sensitivity. During follow-up, conversion to T2DM was assessed by means of 6-monthly fasting glucose levels and yearly oral glucose tolerance tests. Results: The cumulative incidence of T2DM was 34.7%. Hazard ratio for T2DM development adjusted for age, sex, and body mass index was 5.74 [95% confidence interval (CI) 2.60-12.67] for absence of first insulin peak, 1.58 (95% CI 0.60-4.17) for lowest vs. highest tertile of insulin sensitivity, and 1.78 (95% CI 0.65-4.88) for lowest vs. highest tertile of the disposition index. Conclusions: In these Caucasian persons with IGT, the absence of the first insulin peak was the strongest predictor of T2DM. Copyright © 2008 by The Endocrine Society
Recommended from our members
Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes
OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10−8). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10−4), improved β-cell function (P = 1.1 × 10−5), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10−6). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis
Identification of a novel proinsulin-associated SNP and demonstration that proinsulin is unlikely to be a causal factor in subclinical vascular remodelling using Mendelian randomisation
Background and aims Increased proinsulin relative to insulin levels have been associated with subclinical atherosclerosis (measured by carotid intima-media thickness (cIMT)) and are predictive of future cardiovascular disease (CVD), independently of established risk factors. The mechanisms linking proinsulin to atherosclerosis and CVD are unclear. A genome-wide meta-analysis has identified nine loci associated with circulating proinsulin levels. Using proinsulin-associated SNPs, we set out to use a Mendelian randomisation approach to test the hypothesis that proinsulin plays a causal role in subclinical vascular remodelling. Methods We studied the high CVD-risk IMPROVE cohort (n = 3345), which has detailed biochemical phenotyping and repeated, state-of-the-art, high-resolution carotid ultrasound examinations. Genotyping was performed using Illumina Cardio-Metabo and Immuno arrays, which include reported proinsulin-associated loci. Participants with type 2 diabetes (n = 904) were omitted from the analysis. Linear regression was used to identify proinsulin-associated genetic variants. Results We identified a proinsulin locus on chromosome 15 (rs8029765) and replicated it in data from 20,003 additional individuals. An 11-SNP score, including the previously identified and the chromosome 15 proinsulin-associated loci, was significantly and negatively associated with baseline IMTmean and IMTmax (the primary cIMT phenotypes) but not with progression measures. However, MR-Eggers refuted any significant effect of the proinsulin-associated 11-SNP score, and a non-pleiotropic SNP score of three variants (including rs8029765) demonstrated no effect on baseline or progression cIMT measures. Conclusions We identified a novel proinsulin-associated locus and demonstrated that whilst proinsulin levels are associated with cIMT measures, proinsulin per se is unlikely to have a causative effect on cIMT
Inflammatory Markers and Outcomes in Cardiovascular Disease
In a commentary on two new research studies in PLoS Medicine, Leonard Kritharides discusses the role of inflammatory markers in predicting cardiovascular outcomes and patients' responses to treatment
Risk Prediction of Cardiovascular Disease in Type 2 Diabetes: A risk equation from the Swedish National Diabetes Register
OBJECTIVE—Risk prediction models obtained in samples from the general population do not perform well in type 2 diabetic patients. Recently, 5-year risk estimates were proposed as being more accurate than 10-year risk estimates. This study presents a diabetes-specific equation for estimation of the absolute 5-year risk of first incident fatal/nonfatal cardiovascular disease (CVD) in type 2 diabetic patients with use of A1C and clinical characteristics
Glycemic Control and Cardiovascular Disease in 7,454 Patients With Type 1 Diabetes: An observational study from the Swedish National Diabetes Register (NDR)
OBJECTIVE - We assessed the association between A1C and cardiovascular diseases (CVDs) in an observational study of patients with type 1 diabetes followed for 5 years. RESEARCH DESIGN AND METHODS - A total of 7,454 patients were studied from the Swedish National Diabetes Register (aged 20-65 years, diabetes duration 1-35 years, followed from 2002 to 2007). RESULTS - Hazard ratios (HRs) for fatal/nonfatal coronary heart disease (CHD) per 1% unit increase in baseline or updated mean A1C at Cox regression analysis were 1.31 and 1.34 and 1.26 and 1.32, respectively, for fatal/nonfatal CVD (all P < 0.001 after adjustment for age, sex, diabetes duration, blood pressure, total and LDL cholesterol, triglycerides, BMI, smoking, and history of CVD). HRs were only slightly lower for CHD (P = 0.002) and CVD (P = 0.002-0.007) after also adjusting for albuminuria. Adjusted 5-year event rates of CHD and CVD increased progressively with higher A1C, ranging from 5 to 12%, as well as when subgrouped by shorter (1-20 years) or longer (21-35 years) duration of diabetes. A group of 4,186 patients with A1C 5-7.9% (mean 7.2) at baseline showed risk reductions of 41% (95% confidence intervals: 15-60) (P = 0.005) for fatal/nonfatal CHD and 37% (12-55) (P = 0.008) for CVD, compared with 3,268 patients with A1C 8-11.9% (mean 9.0), fully adjusted also for albuminuria. CONCLUSIONS - This observational study of patients in modem everyday clinical practice demonstrates progressively increasing risks for CHD and CVD with higher A1C, independently of traditional risk factors, with no J-shaped risk curves. A baseline mean A1C of 7.2% showed considerably reduced risks of CHD and CVD compared with A1C 9.0%, emphasizing A1C as a strong independent risk factor in type 1 diabetes
Cystatin C, a marker for successful aging and glomerular filtration rate, is not influenced by inflammation
Abstract Background. The plasma level of cystatin C is a better marker than plasma creatinine for successful aging. It has been assumed that the advantage of cystatin C is not only due to it being a better marker for glomerular filtration rate (GFR) than creatinine, but also because an inflammatory state of a patient induces a raised cystatin C level. However, the observations of an association between cystatin C level and inflammation stem from large cohort studies. The present work concerns the cystatin C levels and degree of inflammation in longitudinal studies of individual subjects without inflammation, who undergo elective surgery. Methods. Cystatin C, creatinine, and the inflammatory markers CRP, serum amyloid A (SAA), haptoglobin and orosomucoid were measured in plasma samples from 35 patients the day before elective surgery and subsequently during seven consecutive days. Results. Twenty patients had CRP-levels below 1 mg/L before surgery and low levels of the additional inflammatory markers. Surgery caused marked inflammation with high peak values of CRP and SAA on the second day after the operation. The cystatin C level did not change significantly during the observation period and did not correlate significantly with the level of any of the four inflammatory markers. The creatinine level was significantly reduced on the first postoperative day but reached the preoperative level towards the end of the observation period. Conclusion. The inflammatory status of a patient does not influence the role of cystatin C as a marker of successful aging, nor of GFR
- …
