31 research outputs found

    Prognostic factors in metastatic renal cell carcinoma: metastasectomy as independent prognostic variable

    Get PDF
    Prognostic and predictive factors in patients with metastatic renal cell carcinoma (MRCC) have been evaluated from untreated patients or patients on several different treatment approaches. The aim of this analysis was to define prognostic and predictive factors in patients treated uniformly with a low-dose outpatient cytokine combination. The relationship between patient-, tumour-, and treatment-related factors was analysed in 99 patients with MRCC. These features were first examined in univariate analyses, then a stepwise modelling approach based on Cox regression was used to form a multivariate model. Nuclear grade, metastasectomy – even incomplete – C-reactive protein and lactate dehydrogenase were identified as independent prognostic factors for survival. Patients assigned to three different risk groups had statistically significant survival differences (30, 22 and 6 months, respectively). A total of 43.4% had undergone metastasectomy, mostly incomplete. Risk group affiliation was correlated with response to treatment. Our findings strongly suggest the consideration of metastasectomy in the management of patients with metastatic renal cell cancer undergoing either immunotherapy or targeted treatment

    BMP-2 Dependent Increase of Soft Tissue Density in Arthrofibrotic TKA

    Get PDF
    Arthrofibrosis after total knee arthroplasty (TKA) is difficult to treat, as its aetiology remains unclear. In a previous study, we established a connection between the BMP-2 concentration in the synovial fluid and arthrofibrosis after TKA. The hypothesis of the present study was, therefore, that the limited range of motion in arthrofibrosis is caused by BMP-2 induced heterotopic ossifications, the quantity of which is dependent on the BMP-2 concentration in the synovial fluid

    Inzidenz von aneurysmatischen und juvenilen Knochenzysten im Kindes- und Jugendalter

    No full text

    Alpha 1

    No full text

    Effects of aspect and altitude on carbon cycling processes in a temperate mountain forest catchment

    No full text
    Context: Varying altitudes and aspects within small distances are typically found in mountainous areas. Such a complex topography complicates the accurate quantification of forest C dynamics at larger scales. Objectives We determined the effects of altitude and aspect on forest C cycling in a typical, mountainous catchment in the Northern Limestone Alps. Methods Forest C pools and fluxes were measured along two altitudinal gradients (650-900 m a.s.l.) at south-west (SW) and north-east (NE) facing slopes. Net ecosystem production (NEP) was estimated using a biometric approach combining field measurements of aboveground biomass and soil CO2 efflux (SR) with allometric functions, root:shoot ratios and empirical SR modeling. Results NEP was higher at the SW facing slope (6.60 ? 3.01 t C ha-1 year-1), when compared to the NE facing slope (4.36 ? 2.61 t C ha-1 year-1). SR was higher at the SW facing slope too, balancing out any difference in NEP between aspects (NE: 1.30 ? 3.23 t C ha-1 year-1, SW: 1.65 ? 3.34 t C ha-1 year-1). Soil organic C stocks significantly decreased with altitude. Forest NPP and NEP did not show clear altitudinal trends within the catchment. Conclusions Under current climate conditions, altitude and aspect adversely affect C sequestering and releasing processes, resulting in a relatively uniform forest NEP in the catchment. Hence, including detailed climatic and soil conditions, which are driven by altitude and aspect, will unlikely improve forest NEP estimates at the scale of the studied catchment. In a future climate, however, shifts in temperature and precipitation may disproportionally affect forest C cycling at the southward slopes through increased water limitation

    Effects of aspect and altitude on carbon cycling processes in a temperate mountain forest catchment

    No full text
    Context Varying altitudes and aspects within small distances are typically found in mountainous areas. Such a complex topography complicates the accurate quantification of forest C dynamics at larger scales. Objectives We determined the effects of altitude and aspect on forest C cycling in a typical, mountainous catchment in the Northern Limestone Alps. Methods Forest C pools and fluxes were measured along two altitudinal gradients (650-900 m a.s.l.) at south-west (SW) and north-east (NE) facing slopes. Net ecosystem production (NEP) was estimated using a biometric approach combining field measurements of aboveground biomass and soil CO2 efflux (SR) with allometric functions, root:shoot ratios and empirical SR modeling. Results NEP was higher at the SW facing slope (6.60 ? 3.01 t C ha-1 year-1), when compared to the NE facing slope (4.36 ? 2.61 t C ha-1 year-1). SR was higher at the SW facing slope too, balancing out any difference in NEP between aspects (NE: 1.30 ? 3.23 t C ha-1 year-1, SW: 1.65 ? 3.34 t C ha-1 year-1). Soil organic C stocks significantly decreased with altitude. Forest NPP and NEP did not show clear altitudinal trends within the catchment. Conclusions Under current climate conditions, altitude and aspect adversely affect C sequestering and releasing processes, resulting in a relatively uniform forest NEP in the catchment. Hence, including detailed climatic and soil conditions, which are driven by altitude and aspect, will unlikely improve forest NEP estimates at the scale of the studied catchment. In a future climate, however, shifts in temperature and precipitation may disproportionally affect forest C cycling at the southward slopes through increased water limitation
    corecore