121 research outputs found
A critical review of the mechanisms involved in the occurrence of growth-related abnormalities affecting broiler chicken breast muscles
In the past decade, the poultry industry has faced the occurrence of growth-related muscular abnormalities that mainly affect, with a high incidence rate, the Pectoralis major of the fast-growing genotypes selected for their production performances (high growth rate and breast yield). These myopathies are termed as White Striping, Wooden Breast, and Spaghetti Meat and exhibit distinctive phenotypes. A spatiotemporal distribution has been demonstrated for these disorders as in the early stage they primarily affect the superficial area in the cranial portion of the muscle and, as the birds grow older, involve the entire tissue. Aside from their distinctive phenotypes, these myopathies share common histological features. Thus, it might be speculated that common causative mechanisms might be responsible for the physiological and structural perturbations in the muscle associated with these conditions and might underpin their occurrence. The present review paper aims to represent a critical survey of the outcomes of all the histologic and ultrastructural observations carried out on White Striping, Wooden Breast, and Spaghetti Meat affected muscles. Our analysis has been performed by combining these outcomes with the findings of the genetic studies, trying to identify possible initial causative mechanisms triggering the onset and the time-series of the events ultimately resulting in the development and progression of the growth-related myopathies currently affecting broilers Pectoralis major muscles. Several evidences support the hypothesis that sarcoplasmic reticulum stress, primarily induced an accumulation of misfolded proteins (but also driven by other factors including altered calcium homeostasis and accumulation of fatty acids), may be responsible for the onset of these growth-related myopathies in broilers. At the same time, the development of hypoxic conditions, as a direct consequence of an inadequate vascularization, triggers a time-series sequence of events (i.e., phlebitis, oxidative stress, etc.) resulting in the activation of response mechanisms (i.e., modifications in the energetic metabolism, inflammation, degeneration, and regeneration) which are all strictly related to the progression of these myopathic disorders
Genome-wide association study identifies markers associated with carcass and meat quality traits in Italian Large White pigs
A GWAS was performed using the genotypes obtained by PorcineSNP60 v2 BeadChip and 11 phenotypic traits (carcass lean meat percentage; backfat thickness; Longissimus thoracis muscle thickness; lightness; backfat thickness measured with caliper at the midline; meat pH measured at about 1 h post mortem and 24 h post mortem; CIE L*, a* and b* color parameters; and water-holding capacity). Three markers were associated with three of the phenotypic traits considered: M1GA0009592 (SSC7) with backfat thickness and lean meat content, DIAS0002910 (SSC6) and ALGA0109856 (SSC6) with water-holding capacity. The marker M1GA0009592, associated with backfat thickness, lies in a QTL region near the gene JARID2, which is a transcription factor also involved in the regulation of adipose-derived stem cell pluripotency. The results seem to indicate a possible role of these genomic regions in the regulation of pig carcass fatness (i.e. backfat at last rib) and water-holding capacity
Effects of reduced space allowance and heat stress on behavior and eye temperature in unweaned lambs: A pilot study
Current European animal transportation law contains only a few and vague indications concerning how to move lambs of less than 26 kg. Moreover, little information is available in the literature about factors affecting these lambs’ welfare. We investigated the effect of space allowance and ambient temperature on the welfare of unweaned Lacaune lambs during a simulation of long-distance transportation (19 h). Three groups of lambs (N = 130) were housed in equally sized pens for 19 h, Control (C; n = 39; 0.27 m2 per head), Low Space Allowance (LSA; n = 52; 0.20 m2 per head), and Heat Stress (HS; n = 39; 0.27 m2 per head) groups. LSA lambs had lower space allowance than C but were tested at the same temperature, within their Thermoneutral zone (range = 12–18◦ C). The HS lambs were, instead, subjected to higher temperatures (range = 19–30◦ C). Scan sampling of behavior was conducted, eye temperature and body weight were also recorded. LSA and HS lambs showed more discomfort behaviors (p < 0.05) and higher eye temperatures (p < 0.001) compared to C lambs, while HS lambs additionally showed a decrease in body weight over the experimental period (p < 0.001). This study indicates that lower space allowances and higher temperatures impact negatively the welfare of lambs transported for slaughter suggesting that the regulation should be implemented taking these factors into account
Identification of differentially expressed small RNAs and prediction of target genes in Italian Large White pigs with divergent backfat deposition
The identification of the molecular mechanisms regulating pathways associated with the potential for fat deposition in pigs can lead to the detection of key genes and markers for the genetic improvement of fat traits. Interactions of microRNAs (miRNAs) with target RNAs regulate gene expression and modulate pathway activation in cells and tissues. In pigs, miRNA discovery is far from saturation, and the knowledge of miRNA expression in backfat tissue and particularly of the impact of miRNA variations is still fragmentary. Using RNA-seq, we characterized the small RNA (sRNA) expression profiles in Italian Large White pig backfat tissue. Comparing two groups of pigs divergent for backfat deposition, we detected 31 significant differentially expressed (DE) sRNAs: 14 up-regulated (including ssc-miR-132, ssc-miR-146b, ssc-miR-221-5p, ssc-miR-365-5p and the moRNA ssc-moR-21-5p) and 17 down-regulated (including ssc-miR-136, ssc-miR-195, ssc-miR-199a-5p and ssc-miR-335). To understand the biological impact of the observed miRNA expression variations, we used the expression correlation of DE miRNA target transcripts expressed in the same samples to define a regulatory network of 193 interactions between DE miRNAs and 40 DE target transcripts showing opposite expression profiles and being involved in specific pathways. Several miRNAs and mRNAs in the network were found to be expressed from backfat-related pig QTL. These results are informative for the complex mechanisms influencing fat traits, shed light on a new aspect of the genetic regulation of fat deposition in pigs and facilitate the prospective implementation of innovative strategies of pig genetic improvement based on genomic markers
Muscle transcriptome analysis identifies genes involved in ciliogenesis and the molecular cascade associated with intramuscular fat content in Large White heavy pigs
Intramuscular fat content (IMF) is a complex trait influencing the technological and sensorial features of meat products and determining pork quality. Thus, we aimed at analyzing through RNA-sequencing the Semimembranosus muscle transcriptome of Italian Large White pigs to study the gene networks associated with IMF deposition. Two groups of samples were used; each one was composed of six unrelated pigs with extreme and divergent IMF content (0.67 \ub1 0.09% in low IMF vs. 6.81 \ub1 1.17% in high IMF groups) that were chosen from 950 purebred individuals. Paired-end RNA sequences were aligned to Sus scrofa genome assembly 11.1 and gene counts were analyzed using WGCNA and DeSeq2 packages in R environment. Interestingly, among the 58 differentially expressed genes (DEGs), several were related to primary cilia organelles (such as Lebercilin 5 gene), in addition to the genes involved in the regulation of cell differentiation, in the control of RNA-processing, and G-protein and ERK signaling pathways. Together with cilia-related genes, we also found in high IMF pigs an over-expression of the Fibroblast Growth Factor 2 (FGF2) gene, which in other animal species was found to be a regulator of ciliogenesis. Four WGCNA gene modules resulted significantly associated with IMF deposition: grey60 (P = 0.003), darkturquoise (P = 0.022), skyblue1 (P = 0.022), and lavenderblush3 (P = 0.030). The genes in the significant modules confirmed the results obtained for the DEGs, and the analysis with "cyto- Hubba" indicated genes controlling RNA splicing and cell differentiation as hub genes. Among the complex molecular processes affecting muscle fat depots, genes involved in primary cilia may have an important role, and the transcriptional reprogramming observed in high IMF pigs may be related to an FGF-related molecular cascade and to ciliogenesis, which in the literature have been associated with fibro-adipogenic precursor differentiation
Letter to the Editor commenting on “Efficacy of serratus anterior plane block versus thoracic paravertebral block for postoperative analgesia after breast cancer surgery: a randomized trial”
We have read with very great interest the study published by Arora S et al.: “Efficacy of serratus anterior plane block versus thoracic paravertebral block for postoperative analgesia after breast cancer surgery: a randomized trial”, especially for the attention paid to the key points in the management of breast surgery: postoperative analgesia optimization, incidence of postoperative nausea and vomiting reduction, prevention of the onset of chronic pain and functional impotenc
Carcass Lesion Severity and Pre-Slaughter Conditions in Heavy Pigs: A Prospective Study at a Commercial Abattoir in Northern Italy
Pre-slaughter conditions and their effects on carcass quality have been largely addressed for pigs of 90-100 kg live weight, while few studies consider the effects of pre-slaughter conditions on the quality of the carcasses obtained from heavy pigs intended for Protected Designation of Origin (PDO) production. A total of 1680 heavy pigs were transported in 72 batches from a farm to a commercial abattoir on 16 different days, avoiding mixing unfamiliar animals. Slaughterhouse conditions, animal behaviors, and human-animal interactions were annotated at unloading and during the race toward the stunning cage. Carcass lesions on the rear, middle, and shoulder parts of the carcasses were scored. The prevalence of carcasses with severe lesions was 6.92%, 11.87%, and 6.83%, for the rear, middle, and shoulder parts, respectively. Among the pre-slaughter events, waiting before unloading and improper handling practices at the abattoir were the major factors affecting carcass lesion severity. Lairage pen space allowance was also found to affect severe rear and shoulder lesions, and the batches that were transported in the trailer had an increased prevalence of severe shoulder lesions. Our results suggest waiting time before unloading should be shortened as much as possible, and educational programs to train operators for more careful management of animals in the abattoir are greatly required to avoid improper animal handling practices
Carcass Lesion Severity and Pre-Slaughter Conditions in Heavy Pigs: A Prospective Study at a Commercial Abattoir in Northern Italy
Pre-slaughter conditions and their effects on carcass quality have been largely addressed for pigs of 90–100 kg live weight, while few studies consider the effects of pre-slaughter conditions on the quality of the carcasses obtained from heavy pigs intended for Protected Designation of Origin (PDO) production. A total of 1680 heavy pigs were transported in 72 batches from a farm to a commercial abattoir on 16 different days, avoiding mixing unfamiliar animals. Slaughterhouse conditions, animal behaviors, and human–animal interactions were annotated at unloading and during the race toward the stunning cage. Carcass lesions on the rear, middle, and shoulder parts of the carcasses were scored. The prevalence of carcasses with severe lesions was 6.92%, 11.87%, and 6.83%, for the rear, middle, and shoulder parts, respectively. Among the pre-slaughter events, waiting before unloading and improper handling practices at the abattoir were the major factors affecting carcass lesion severity. Lairage pen space allowance was also found to affect severe rear and shoulder lesions, and the batches that were transported in the trailer had an increased prevalence of severe shoulder lesions. Our results suggest waiting time before unloading should be shortened as much as possible, and educational programs to train operators for more careful management of animals in the abattoir are greatly required to avoid improper animal handling practices
Describing backfat and Semimembranosus muscle fatty acid variability in heavy pigs: Analysis of non–genetic factors
This study aimed to describe the multivariate structure of Semimembranosus muscle and backfat fatty acid (FA) composition in 798 Italian Large White heavy pigs and to investigate the effects of environmental factors and carcass characteristics on FA variations. The total FA variability in muscle and backfat was characterized by a negative correlation between saturated and polyunsaturated FAs, which strongly depended on the carcass adiposity. Slaughtering season was also relevant, with pigs slaughtered in autumn having more n-6 FAs and eicosadienoic acid in backfat, while pigs slaughtered in winter displayed more saturated FAs. Regarding Semimembranosus muscle, pigs with heavier belly cuts and slaughtered in autumn had higher proportions of cis-vaccenic and palmitoleic acids, while those slaughtered in summer had more saturated FAs. Slaughtering season emerged as a relevant factor shaping both backfat and muscle FA composition, indicating that more studies and attention should be paid to environmental factors, which may have effects on FA metabolism and deposition in finishing pigs
Tailoring the CRISPR system to transactivate coagulation gene promoters in normal and mutated contexts
Engineered transcription factors (TF)have expanded our ability to modulate gene expression and hold great promise as bio-therapeutics. The first-generation TF, based on Zinc Fingers or Transcription-Activator-like Effectors (TALE), required complex and time-consuming assembly protocols, and were indeed replaced in recent years by the CRISPR activation (CRISPRa)technology. Here, with coagulation F7/F8 gene promoters as models, we exploited a CRISPRa system based on deactivated (d)Cas9, fused with a transcriptional activator (VPR), which is driven to its target by a single guide (sg)RNA. Reporter gene assays in hepatoma cells identified a sgRNA (sgRNA F7.5 )triggering a ~35-fold increase in the activity of F7 promoter, either wild-type, or defective due to the c.-61T>G mutation. The effect was higher (~15-fold)than that of an engineered TALE-TF (TF4)targeting the same promoter region. Noticeably, when challenged on the endogenous F7 gene, the dCas9-VPR/sgRNA F7.5 combination was more efficient (~6.5-fold)in promoting factor VII (FVII)protein secretion/activity than TF4 (~3.8-fold). The approach was translated to the promoter of F8, whose reduced expression causes hemophilia A. Reporter gene assays in hepatic and endothelial cells identified sgRNAs that, respectively, appreciably increased F8 promoter activity (sgRNA F8.1 , ~8-fold and 3-fold; sgRNA F8.2 , ~19-fold and 2-fold)with synergistic effects (~38-fold and 2.7-fold). Since modest increases in F7/F8 expression would ameliorate patients' phenotype, the CRISPRa-mediated transactivation extent might approach the low therapeutic threshold. Through this pioneer study we demonstrated that the CRISPRa system is easily tailorable to increase expression, or rescue disease-causing mutations, of different promoters, with potential intriguing implications for human disease models
- …