11 research outputs found

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    Radiation-grafted membranes for polymer electrolyte fuel cells: current trends and future directions

    No full text
    Fuel cell technology is one of the key emerging technologies that is currently attracting tremendous effort with the aim to provide alternative environmentally friendly and efficient power sources. The worldwide move away from conventional fossil fuel combustion power generation technologies is driving much of this important research. The replacement of a liquid electrolyte by PEM in such systems has eliminated the corrosion problems and conferred on the system additional advantages such as simplicity of construction, compactness, and quick self-starting at ambient temperatures. The successful performance of these kinds of fuel cell systems depends critically on the role played by the PEM. The second category involves the formation of acid-base complexes that provide a viable alternative for membranes that can maintain high conductivity at elevated temperatures without suffering from dehydration effects

    Radiation-Grafted Membranes for Polymer Electrolyte Fuel Cells: Current Trends and Future Directions

    No full text

    Challenges in QCD matter physics --The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    No full text
    corecore