15 research outputs found

    miRNA-135a promotes breast cancer cell migration and invasion by targeting HOXA10

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>miRNAs are a group of small RNA molecules regulating target genes by inducing mRNA degradation or translational repression. Aberrant expression of miRNAs correlates with various cancers. Although miR-135a has been implicated in several other cancers, its role in breast cancer is unknown. <it>HOXA10 </it>however, is associated with multiple cancer types and was recently shown to induce p53 expression in breast cancer cells and reduce their invasive ability. Because <it>HOXA10 </it>is a confirmed miR-135a target in more than one tissue, we examined miR-135a levels in relation to breast cancer phenotypes to determine if miR-135a plays role in this cancer type.</p> <p>Methods</p> <p>Expression levels of miR-135a in tissues and cells were determined by poly (A)-RT PCR. The effect of miR-135a on proliferation was evaluated by CCK8 assay, cell migration and invasion were evaluated by transwell migration and invasion assays, and target protein expression was determined by western blotting. GFP and luciferase reporter plasmids were constructed to confirm the action of miR-135a on downstream target genes including <it>HOXA10</it>. Results are reported as means ± S.D. and differences were tested for significance using 2-sided Student"s t-test.</p> <p>Results</p> <p>Here we report that miR-135a was highly expressed in metastatic breast tumors. We found that the expression of miR-135a was required for the migration and invasion of breast cancer cells, but not their proliferation. <it>HOXA10</it>, which encodes a transcription factor required for embryonic development and is a metastasis suppressor in breast cancer, was shown to be a direct target of miR-135a in breast cancer cells. Our analysis showed that miR-135a suppressed the expression of <it>HOXA10 </it>both at the mRNA and protein level, and its ability to promote cellular migration and invasion was partially reversed by overexpression of <it>HOXA10</it>.</p> <p>Conclusions</p> <p>In summary, our results indicate that miR-135a is an onco-miRNA that can promote breast cancer cell migration and invasion. <it>HOXA10 </it>is a target gene for miR-135a in breast cancer cells and overexpression of <it>HOXA10 </it>can partially reverse the miR-135a invasive phenotype.</p

    HOXA1 is overexpressed in oral squamous cell carcinomas and its expression is correlated with poor prognosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HOX genes encode homeodomain-containing transcription factors involved in the regulation of cellular proliferation and differentiation during embryogenesis. However, members of this family demonstrated oncogenic properties in some malignancies. The present study investigated whether genes of the HOXA cluster play a role in oral cancer.</p> <p>Methods</p> <p>In order to identify differentially expressed HOXA genes, duplex RT-PCR in oral samples from healthy mucosa and squamous cell carcinoma was used. The effects of HOXA1 on proliferation, apoptosis, adhesion, invasion, epithelial-mesenchymal transition (EMT) and anchorage-independent growth were assessed in cells with up- and down-regulation of HOXA1. Immunohistochemical analysis using a tissue microarray (TMA) containing 127 oral squamous cell carcinomas (OSCC) was performed to determine the prognostic role of HOXA1 expression.</p> <p>Results</p> <p>We showed that transcripts of HOXA genes are more abundant in OSCC than in healthy oral mucosa. In particular, HOXA1, which has been described as one of the HOX members that plays an important role in tumorigenesis, was significantly more expressed in OSCCs compared to healthy oral mucosas. Further analysis demonstrated that overexpression of HOXA1 in HaCAT human epithelial cells promotes proliferation, whereas downregulation of HOXA1 in human OSCC cells (SCC9 cells) decreases it. Enforced HOXA1 expression in HaCAT cells was not capable of modulating other events related to tumorigenesis, including apoptosis, adhesion, invasion, EMT and anchorage-independent growth. A high number of HOXA1-positive cells was significantly associated with T stage, N stage, tumor differentiation and proliferative potential of the tumors, and was predictive of poor survival. In multivariate analysis, HOXA1 was an independent prognostic factor for OSCC patients (HR: 2.68; 95% CI: 1.59-2.97; p = 0.026).</p> <p>Conclusion</p> <p>Our findings indicate that HOXA1 may contribute to oral carcinogenesis by increasing tumor cell proliferation, and suggest that HOXA1 expression might be helpful as a prognostic marker for patients with OSCC.</p
    corecore